Properties

Label 2-51408-1.1-c1-0-53
Degree $2$
Conductor $51408$
Sign $-1$
Analytic cond. $410.494$
Root an. cond. $20.2606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 13-s + 17-s + 5·19-s − 3·23-s − 4·25-s + 3·29-s − 6·31-s + 35-s − 3·41-s + 3·43-s − 2·47-s + 49-s − 8·53-s + 14·59-s + 8·61-s − 65-s + 9·67-s + 3·71-s − 16·73-s − 4·79-s − 6·83-s − 85-s + 10·89-s − 91-s − 5·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.277·13-s + 0.242·17-s + 1.14·19-s − 0.625·23-s − 4/5·25-s + 0.557·29-s − 1.07·31-s + 0.169·35-s − 0.468·41-s + 0.457·43-s − 0.291·47-s + 1/7·49-s − 1.09·53-s + 1.82·59-s + 1.02·61-s − 0.124·65-s + 1.09·67-s + 0.356·71-s − 1.87·73-s − 0.450·79-s − 0.658·83-s − 0.108·85-s + 1.05·89-s − 0.104·91-s − 0.512·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51408\)    =    \(2^{4} \cdot 3^{3} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(410.494\)
Root analytic conductor: \(20.2606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60234903936511, −14.28097292390624, −13.79089423450888, −13.07259348497943, −12.84262828552972, −12.07345650873870, −11.66130792582284, −11.33011466259364, −10.59137294636197, −9.997321599921714, −9.672834057959768, −9.033475111994412, −8.406727468645976, −7.934716360166866, −7.355901127532819, −6.895969042346821, −6.190882332374519, −5.614501775969563, −5.145681176988970, −4.318364546907708, −3.723291956007090, −3.310378746150011, −2.516473223394406, −1.730415521323817, −0.8946163174452279, 0, 0.8946163174452279, 1.730415521323817, 2.516473223394406, 3.310378746150011, 3.723291956007090, 4.318364546907708, 5.145681176988970, 5.614501775969563, 6.190882332374519, 6.895969042346821, 7.355901127532819, 7.934716360166866, 8.406727468645976, 9.033475111994412, 9.672834057959768, 9.997321599921714, 10.59137294636197, 11.33011466259364, 11.66130792582284, 12.07345650873870, 12.84262828552972, 13.07259348497943, 13.79089423450888, 14.28097292390624, 14.60234903936511

Graph of the $Z$-function along the critical line