| L(s)  = 1 | − 5-s     − 7-s             + 13-s         + 17-s     + 5·19-s         − 3·23-s     − 4·25-s         + 3·29-s     − 6·31-s         + 35-s             − 3·41-s     + 3·43-s         − 2·47-s     + 49-s         − 8·53-s             + 14·59-s     + 8·61-s         − 65-s     + 9·67-s         + 3·71-s     − 16·73-s             − 4·79-s         − 6·83-s     − 85-s         + 10·89-s     − 91-s         − 5·95-s  + ⋯ | 
| L(s)  = 1 | − 0.447·5-s     − 0.377·7-s             + 0.277·13-s         + 0.242·17-s     + 1.14·19-s         − 0.625·23-s     − 4/5·25-s         + 0.557·29-s     − 1.07·31-s         + 0.169·35-s             − 0.468·41-s     + 0.457·43-s         − 0.291·47-s     + 1/7·49-s         − 1.09·53-s             + 1.82·59-s     + 1.02·61-s         − 0.124·65-s     + 1.09·67-s         + 0.356·71-s     − 1.87·73-s             − 0.450·79-s         − 0.658·83-s     − 0.108·85-s         + 1.05·89-s     − 0.104·91-s         − 0.512·95-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 51408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 7 | \( 1 + T \) |  | 
|  | 17 | \( 1 - T \) |  | 
| good | 5 | \( 1 + T + p T^{2} \) | 1.5.b | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 13 | \( 1 - T + p T^{2} \) | 1.13.ab | 
|  | 19 | \( 1 - 5 T + p T^{2} \) | 1.19.af | 
|  | 23 | \( 1 + 3 T + p T^{2} \) | 1.23.d | 
|  | 29 | \( 1 - 3 T + p T^{2} \) | 1.29.ad | 
|  | 31 | \( 1 + 6 T + p T^{2} \) | 1.31.g | 
|  | 37 | \( 1 + p T^{2} \) | 1.37.a | 
|  | 41 | \( 1 + 3 T + p T^{2} \) | 1.41.d | 
|  | 43 | \( 1 - 3 T + p T^{2} \) | 1.43.ad | 
|  | 47 | \( 1 + 2 T + p T^{2} \) | 1.47.c | 
|  | 53 | \( 1 + 8 T + p T^{2} \) | 1.53.i | 
|  | 59 | \( 1 - 14 T + p T^{2} \) | 1.59.ao | 
|  | 61 | \( 1 - 8 T + p T^{2} \) | 1.61.ai | 
|  | 67 | \( 1 - 9 T + p T^{2} \) | 1.67.aj | 
|  | 71 | \( 1 - 3 T + p T^{2} \) | 1.71.ad | 
|  | 73 | \( 1 + 16 T + p T^{2} \) | 1.73.q | 
|  | 79 | \( 1 + 4 T + p T^{2} \) | 1.79.e | 
|  | 83 | \( 1 + 6 T + p T^{2} \) | 1.83.g | 
|  | 89 | \( 1 - 10 T + p T^{2} \) | 1.89.ak | 
|  | 97 | \( 1 + 14 T + p T^{2} \) | 1.97.o | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.60234903936511, −14.28097292390624, −13.79089423450888, −13.07259348497943, −12.84262828552972, −12.07345650873870, −11.66130792582284, −11.33011466259364, −10.59137294636197, −9.997321599921714, −9.672834057959768, −9.033475111994412, −8.406727468645976, −7.934716360166866, −7.355901127532819, −6.895969042346821, −6.190882332374519, −5.614501775969563, −5.145681176988970, −4.318364546907708, −3.723291956007090, −3.310378746150011, −2.516473223394406, −1.730415521323817, −0.8946163174452279, 0, 
0.8946163174452279, 1.730415521323817, 2.516473223394406, 3.310378746150011, 3.723291956007090, 4.318364546907708, 5.145681176988970, 5.614501775969563, 6.190882332374519, 6.895969042346821, 7.355901127532819, 7.934716360166866, 8.406727468645976, 9.033475111994412, 9.672834057959768, 9.997321599921714, 10.59137294636197, 11.33011466259364, 11.66130792582284, 12.07345650873870, 12.84262828552972, 13.07259348497943, 13.79089423450888, 14.28097292390624, 14.60234903936511
