Properties

Label 2-50700-1.1-c1-0-32
Degree $2$
Conductor $50700$
Sign $-1$
Analytic cond. $404.841$
Root an. cond. $20.1206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 2·11-s + 5·19-s + 8·23-s − 27-s + 6·29-s + 5·31-s − 2·33-s − 2·37-s − 12·41-s − 8·43-s − 7·49-s + 2·53-s − 5·57-s + 2·59-s + 7·61-s + 12·67-s − 8·69-s − 10·71-s + 7·73-s − 13·79-s + 81-s − 12·83-s − 6·87-s − 10·89-s − 5·93-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.603·11-s + 1.14·19-s + 1.66·23-s − 0.192·27-s + 1.11·29-s + 0.898·31-s − 0.348·33-s − 0.328·37-s − 1.87·41-s − 1.21·43-s − 49-s + 0.274·53-s − 0.662·57-s + 0.260·59-s + 0.896·61-s + 1.46·67-s − 0.963·69-s − 1.18·71-s + 0.819·73-s − 1.46·79-s + 1/9·81-s − 1.31·83-s − 0.643·87-s − 1.05·89-s − 0.518·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(404.841\)
Root analytic conductor: \(20.1206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 15 T + p T^{2} \) 1.97.ap
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76599011550396, −14.21407718508601, −13.75320096458793, −13.13258852488982, −12.80544847134657, −11.93515731866367, −11.76142611671933, −11.32927613377911, −10.64567132410890, −10.00645668373893, −9.793344467006049, −9.005363985976467, −8.495475021219593, −8.004488786064399, −7.112783646244399, −6.786772547733451, −6.414876012965201, −5.465705846499915, −5.116038569351748, −4.614665935600086, −3.782377364192459, −3.184337398809504, −2.585206410077371, −1.411564396670750, −1.112986593892160, 0, 1.112986593892160, 1.411564396670750, 2.585206410077371, 3.184337398809504, 3.782377364192459, 4.614665935600086, 5.116038569351748, 5.465705846499915, 6.414876012965201, 6.786772547733451, 7.112783646244399, 8.004488786064399, 8.495475021219593, 9.005363985976467, 9.793344467006049, 10.00645668373893, 10.64567132410890, 11.32927613377911, 11.76142611671933, 11.93515731866367, 12.80544847134657, 13.13258852488982, 13.75320096458793, 14.21407718508601, 14.76599011550396

Graph of the $Z$-function along the critical line