Dirichlet series
L(s) = 1 | + 2-s − 4-s − 3·8-s − 3·9-s + 4·11-s − 16-s − 3·18-s + 4·22-s + 8·23-s − 5·25-s + 2·29-s + 5·32-s + 3·36-s − 6·37-s − 12·43-s − 4·44-s + 8·46-s − 5·50-s − 10·53-s + 2·58-s + 7·64-s + 4·67-s + 16·71-s + 9·72-s − 6·74-s + 8·79-s + 9·81-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s − 9-s + 1.20·11-s − 1/4·16-s − 0.707·18-s + 0.852·22-s + 1.66·23-s − 25-s + 0.371·29-s + 0.883·32-s + 1/2·36-s − 0.986·37-s − 1.82·43-s − 0.603·44-s + 1.17·46-s − 0.707·50-s − 1.37·53-s + 0.262·58-s + 7/8·64-s + 0.488·67-s + 1.89·71-s + 1.06·72-s − 0.697·74-s + 0.900·79-s + 81-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Invariants
Degree: | \(2\) |
Conductor: | \(49\) = \(7^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(0.391266\) |
Root analytic conductor: | \(0.625513\) |
Motivic weight: | \(1\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | yes |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((2,\ 49,\ (\ :1/2),\ 1)\) |
Particular Values
\(L(1)\) | \(\approx\) | \(0.9666558528\) |
\(L(\frac12)\) | \(\approx\) | \(0.9666558528\) |
\(L(\frac{3}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
---|---|---|---|
bad | 7 | \( 1 \) | |
good | 2 | \( 1 - T + p T^{2} \) | 1.2.ab |
3 | \( 1 + p T^{2} \) | 1.3.a | |
5 | \( 1 + p T^{2} \) | 1.5.a | |
11 | \( 1 - 4 T + p T^{2} \) | 1.11.ae | |
13 | \( 1 + p T^{2} \) | 1.13.a | |
17 | \( 1 + p T^{2} \) | 1.17.a | |
19 | \( 1 + p T^{2} \) | 1.19.a | |
23 | \( 1 - 8 T + p T^{2} \) | 1.23.ai | |
29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | |
31 | \( 1 + p T^{2} \) | 1.31.a | |
37 | \( 1 + 6 T + p T^{2} \) | 1.37.g | |
41 | \( 1 + p T^{2} \) | 1.41.a | |
43 | \( 1 + 12 T + p T^{2} \) | 1.43.m | |
47 | \( 1 + p T^{2} \) | 1.47.a | |
53 | \( 1 + 10 T + p T^{2} \) | 1.53.k | |
59 | \( 1 + p T^{2} \) | 1.59.a | |
61 | \( 1 + p T^{2} \) | 1.61.a | |
67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae | |
71 | \( 1 - 16 T + p T^{2} \) | 1.71.aq | |
73 | \( 1 + p T^{2} \) | 1.73.a | |
79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | |
83 | \( 1 + p T^{2} \) | 1.83.a | |
89 | \( 1 + p T^{2} \) | 1.89.a | |
97 | \( 1 + p T^{2} \) | 1.97.a | |
show more | |||
show less |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.25649719028727745654998030256, −14.36789003254179224985767994212, −13.55829126515041538892762617601, −12.27943344760252552732176729088, −11.30850265031875128052013945557, −9.489525085039792097687572288594, −8.498120181782134288657898916471, −6.47803659589426412986704519993, −5.08673463814783736975452386140, −3.45773984941604093394269964405, 3.45773984941604093394269964405, 5.08673463814783736975452386140, 6.47803659589426412986704519993, 8.498120181782134288657898916471, 9.489525085039792097687572288594, 11.30850265031875128052013945557, 12.27943344760252552732176729088, 13.55829126515041538892762617601, 14.36789003254179224985767994212, 15.25649719028727745654998030256