Properties

Label 2-48960-1.1-c1-0-57
Degree $2$
Conductor $48960$
Sign $1$
Analytic cond. $390.947$
Root an. cond. $19.7723$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·13-s + 17-s + 4·19-s + 25-s + 10·29-s + 8·31-s + 6·37-s + 2·41-s − 8·43-s − 7·49-s + 2·53-s + 12·59-s − 14·61-s − 2·65-s − 8·67-s + 4·71-s + 6·73-s + 16·79-s − 4·83-s − 85-s + 6·89-s − 4·95-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.554·13-s + 0.242·17-s + 0.917·19-s + 1/5·25-s + 1.85·29-s + 1.43·31-s + 0.986·37-s + 0.312·41-s − 1.21·43-s − 49-s + 0.274·53-s + 1.56·59-s − 1.79·61-s − 0.248·65-s − 0.977·67-s + 0.474·71-s + 0.702·73-s + 1.80·79-s − 0.439·83-s − 0.108·85-s + 0.635·89-s − 0.410·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48960\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(390.947\)
Root analytic conductor: \(19.7723\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.709780410\)
\(L(\frac12)\) \(\approx\) \(2.709780410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53450384026312, −13.95918855324840, −13.60029262517112, −13.06969886723741, −12.39495893780880, −11.86672186105417, −11.64405739317522, −10.93400728628511, −10.41448080124309, −9.854881783917473, −9.432318385179104, −8.611379770827930, −8.254404790839037, −7.777275609848429, −7.133204670125455, −6.425076741956013, −6.156859698507174, −5.259121337465890, −4.719789777462673, −4.238492567662793, −3.316245933223446, −3.050536237739556, −2.170730567418665, −1.175172167392695, −0.6730032063198411, 0.6730032063198411, 1.175172167392695, 2.170730567418665, 3.050536237739556, 3.316245933223446, 4.238492567662793, 4.719789777462673, 5.259121337465890, 6.156859698507174, 6.425076741956013, 7.133204670125455, 7.777275609848429, 8.254404790839037, 8.611379770827930, 9.432318385179104, 9.854881783917473, 10.41448080124309, 10.93400728628511, 11.64405739317522, 11.86672186105417, 12.39495893780880, 13.06969886723741, 13.60029262517112, 13.95918855324840, 14.53450384026312

Graph of the $Z$-function along the critical line