Properties

Label 2-486-1.1-c1-0-9
Degree $2$
Conductor $486$
Sign $-1$
Analytic cond. $3.88072$
Root an. cond. $1.96995$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s + 2·7-s − 8-s + 3·10-s − 4·13-s − 2·14-s + 16-s + 6·17-s − 7·19-s − 3·20-s − 9·23-s + 4·25-s + 4·26-s + 2·28-s − 9·29-s + 2·31-s − 32-s − 6·34-s − 6·35-s − 4·37-s + 7·38-s + 3·40-s + 6·41-s − 4·43-s + 9·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.755·7-s − 0.353·8-s + 0.948·10-s − 1.10·13-s − 0.534·14-s + 1/4·16-s + 1.45·17-s − 1.60·19-s − 0.670·20-s − 1.87·23-s + 4/5·25-s + 0.784·26-s + 0.377·28-s − 1.67·29-s + 0.359·31-s − 0.176·32-s − 1.02·34-s − 1.01·35-s − 0.657·37-s + 1.13·38-s + 0.474·40-s + 0.937·41-s − 0.609·43-s + 1.32·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(486\)    =    \(2 \cdot 3^{5}\)
Sign: $-1$
Analytic conductor: \(3.88072\)
Root analytic conductor: \(1.96995\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 486,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51435934841690623906670741078, −9.697252328270977284624171046662, −8.465132934113824858756487265843, −7.85400592111218694139788018379, −7.32800712279579443871219132970, −5.93961037827028489073777534125, −4.62390384313555204390288516348, −3.60634322109716502135704894763, −1.99374822115735108795241652513, 0, 1.99374822115735108795241652513, 3.60634322109716502135704894763, 4.62390384313555204390288516348, 5.93961037827028489073777534125, 7.32800712279579443871219132970, 7.85400592111218694139788018379, 8.465132934113824858756487265843, 9.697252328270977284624171046662, 10.51435934841690623906670741078

Graph of the $Z$-function along the critical line