Properties

Label 2-48552-1.1-c1-0-13
Degree $2$
Conductor $48552$
Sign $1$
Analytic cond. $387.689$
Root an. cond. $19.6898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 7-s + 9-s − 3·11-s + 2·13-s + 3·15-s − 2·19-s + 21-s − 4·23-s + 4·25-s + 27-s + 3·29-s − 3·31-s − 3·33-s + 3·35-s + 6·37-s + 2·39-s − 4·41-s + 10·43-s + 3·45-s + 8·47-s + 49-s − 5·53-s − 9·55-s − 2·57-s − 13·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 0.377·7-s + 1/3·9-s − 0.904·11-s + 0.554·13-s + 0.774·15-s − 0.458·19-s + 0.218·21-s − 0.834·23-s + 4/5·25-s + 0.192·27-s + 0.557·29-s − 0.538·31-s − 0.522·33-s + 0.507·35-s + 0.986·37-s + 0.320·39-s − 0.624·41-s + 1.52·43-s + 0.447·45-s + 1.16·47-s + 1/7·49-s − 0.686·53-s − 1.21·55-s − 0.264·57-s − 1.69·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48552\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(387.689\)
Root analytic conductor: \(19.6898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.227329763\)
\(L(\frac12)\) \(\approx\) \(4.227329763\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.33483715397835, −14.00351102953896, −13.68727717392647, −13.03722664022692, −12.74143994230541, −12.13675074965872, −11.32780994645296, −10.81416617607120, −10.25459723063670, −10.02397398376009, −9.141784747429302, −9.005617208546999, −8.243202663900428, −7.728170133195660, −7.268668682663444, −6.304329463550204, −6.022157794122546, −5.493035195458148, −4.708126454252473, −4.256060458939224, −3.353148628379159, −2.699624118897452, −2.103296801862404, −1.648341227784230, −0.6826361207113849, 0.6826361207113849, 1.648341227784230, 2.103296801862404, 2.699624118897452, 3.353148628379159, 4.256060458939224, 4.708126454252473, 5.493035195458148, 6.022157794122546, 6.304329463550204, 7.268668682663444, 7.728170133195660, 8.243202663900428, 9.005617208546999, 9.141784747429302, 10.02397398376009, 10.25459723063670, 10.81416617607120, 11.32780994645296, 12.13675074965872, 12.74143994230541, 13.03722664022692, 13.68727717392647, 14.00351102953896, 14.33483715397835

Graph of the $Z$-function along the critical line