Properties

Label 2-47808-1.1-c1-0-11
Degree $2$
Conductor $47808$
Sign $1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·7-s + 3·11-s + 6·13-s − 5·17-s − 2·19-s + 4·23-s − 25-s − 7·29-s + 5·31-s + 6·35-s + 11·37-s + 2·41-s + 8·43-s + 2·49-s + 6·53-s − 6·55-s + 5·59-s − 5·61-s − 12·65-s + 2·67-s − 2·71-s − 9·77-s + 14·79-s − 83-s + 10·85-s − 18·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.13·7-s + 0.904·11-s + 1.66·13-s − 1.21·17-s − 0.458·19-s + 0.834·23-s − 1/5·25-s − 1.29·29-s + 0.898·31-s + 1.01·35-s + 1.80·37-s + 0.312·41-s + 1.21·43-s + 2/7·49-s + 0.824·53-s − 0.809·55-s + 0.650·59-s − 0.640·61-s − 1.48·65-s + 0.244·67-s − 0.237·71-s − 1.02·77-s + 1.57·79-s − 0.109·83-s + 1.08·85-s − 1.88·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.598017966\)
\(L(\frac12)\) \(\approx\) \(1.598017966\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.82642878596650, −13.90718882296845, −13.42267791569316, −13.10618422673604, −12.59608718917382, −11.97433538531779, −11.31493298168470, −11.12059004719938, −10.61876561226468, −9.744222613440166, −9.193812412176075, −8.971451544394048, −8.246295435511844, −7.767309099178384, −6.960939765868134, −6.571578168164123, −6.111397611440806, −5.570373737319748, −4.408499570713411, −4.107428548257359, −3.653108861532454, −2.973499353378006, −2.217912269466605, −1.186871175072455, −0.5022317901430736, 0.5022317901430736, 1.186871175072455, 2.217912269466605, 2.973499353378006, 3.653108861532454, 4.107428548257359, 4.408499570713411, 5.570373737319748, 6.111397611440806, 6.571578168164123, 6.960939765868134, 7.767309099178384, 8.246295435511844, 8.971451544394048, 9.193812412176075, 9.744222613440166, 10.61876561226468, 11.12059004719938, 11.31493298168470, 11.97433538531779, 12.59608718917382, 13.10618422673604, 13.42267791569316, 13.90718882296845, 14.82642878596650

Graph of the $Z$-function along the critical line