Properties

Label 2-47808-1.1-c1-0-47
Degree $2$
Conductor $47808$
Sign $-1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 3·11-s + 6·13-s + 4·17-s − 3·19-s − 23-s − 4·25-s + 4·29-s + 2·31-s − 4·35-s − 3·37-s − 6·41-s − 12·43-s + 9·49-s − 9·53-s + 3·55-s + 7·59-s + 61-s − 6·65-s + 7·67-s + 4·73-s − 12·77-s + 4·79-s − 83-s − 4·85-s − 5·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 0.904·11-s + 1.66·13-s + 0.970·17-s − 0.688·19-s − 0.208·23-s − 4/5·25-s + 0.742·29-s + 0.359·31-s − 0.676·35-s − 0.493·37-s − 0.937·41-s − 1.82·43-s + 9/7·49-s − 1.23·53-s + 0.404·55-s + 0.911·59-s + 0.128·61-s − 0.744·65-s + 0.855·67-s + 0.468·73-s − 1.36·77-s + 0.450·79-s − 0.109·83-s − 0.433·85-s − 0.529·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.82569896275900, −14.32464719432136, −13.80767707293004, −13.37578856334083, −12.85013057072269, −12.04862307280234, −11.75650394870226, −11.21633637958721, −10.75970285073443, −10.28893999839617, −9.760397800756041, −8.786388303944274, −8.367280496781873, −8.023706715763651, −7.747204703685402, −6.770226004962758, −6.326096159765753, −5.469583689208119, −5.156198258181670, −4.497657338509505, −3.793097976719950, −3.348762756924688, −2.404176006441524, −1.643832601072350, −1.133308764751995, 0, 1.133308764751995, 1.643832601072350, 2.404176006441524, 3.348762756924688, 3.793097976719950, 4.497657338509505, 5.156198258181670, 5.469583689208119, 6.326096159765753, 6.770226004962758, 7.747204703685402, 8.023706715763651, 8.367280496781873, 8.786388303944274, 9.760397800756041, 10.28893999839617, 10.75970285073443, 11.21633637958721, 11.75650394870226, 12.04862307280234, 12.85013057072269, 13.37578856334083, 13.80767707293004, 14.32464719432136, 14.82569896275900

Graph of the $Z$-function along the critical line