Properties

Label 2-474-1.1-c1-0-11
Degree $2$
Conductor $474$
Sign $-1$
Analytic cond. $3.78490$
Root an. cond. $1.94548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s − 3·7-s − 8-s + 9-s − 2·10-s − 5·11-s − 12-s − 13-s + 3·14-s − 2·15-s + 16-s + 5·17-s − 18-s − 6·19-s + 2·20-s + 3·21-s + 5·22-s + 3·23-s + 24-s − 25-s + 26-s − 27-s − 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s − 1.50·11-s − 0.288·12-s − 0.277·13-s + 0.801·14-s − 0.516·15-s + 1/4·16-s + 1.21·17-s − 0.235·18-s − 1.37·19-s + 0.447·20-s + 0.654·21-s + 1.06·22-s + 0.625·23-s + 0.204·24-s − 1/5·25-s + 0.196·26-s − 0.192·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 474 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 474 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(474\)    =    \(2 \cdot 3 \cdot 79\)
Sign: $-1$
Analytic conductor: \(3.78490\)
Root analytic conductor: \(1.94548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 474,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
79 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 9 T + p T^{2} \) 1.73.j
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26654239627389515631056683681, −9.947684152353270934723879199442, −8.967804168387287255389573412686, −7.79391119369772281647296286040, −6.84268861807480107704102527708, −5.91973300003215750552458540761, −5.19494737676757719955570680156, −3.31829273462319509512303304800, −2.03789622258225414220676544033, 0, 2.03789622258225414220676544033, 3.31829273462319509512303304800, 5.19494737676757719955570680156, 5.91973300003215750552458540761, 6.84268861807480107704102527708, 7.79391119369772281647296286040, 8.967804168387287255389573412686, 9.947684152353270934723879199442, 10.26654239627389515631056683681

Graph of the $Z$-function along the critical line