Properties

Label 2-47040-1.1-c1-0-45
Degree $2$
Conductor $47040$
Sign $1$
Analytic cond. $375.616$
Root an. cond. $19.3808$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 2·13-s − 15-s + 6·17-s − 4·23-s + 25-s − 27-s + 2·29-s + 8·31-s − 6·37-s + 2·39-s + 6·41-s − 12·43-s + 45-s + 12·47-s − 6·51-s + 10·53-s + 8·59-s − 10·61-s − 2·65-s + 12·67-s + 4·69-s + 8·71-s − 10·73-s − 75-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.554·13-s − 0.258·15-s + 1.45·17-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.986·37-s + 0.320·39-s + 0.937·41-s − 1.82·43-s + 0.149·45-s + 1.75·47-s − 0.840·51-s + 1.37·53-s + 1.04·59-s − 1.28·61-s − 0.248·65-s + 1.46·67-s + 0.481·69-s + 0.949·71-s − 1.17·73-s − 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47040\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(375.616\)
Root analytic conductor: \(19.3808\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.180418666\)
\(L(\frac12)\) \(\approx\) \(2.180418666\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58164674187140, −13.90844878156037, −13.74914570234523, −13.01879973609270, −12.34851481276749, −11.95628078870494, −11.81357778608161, −10.80409860561501, −10.40078159850891, −9.989488892764292, −9.543582330636655, −8.871477307457646, −8.107967476419953, −7.796427811980465, −6.997268873652654, −6.560379872642531, −5.931149260594388, −5.336356273623024, −5.021640021086029, −4.158836116291951, −3.603837962831549, −2.753756587965525, −2.149368125857590, −1.257892369298558, −0.5911141244024554, 0.5911141244024554, 1.257892369298558, 2.149368125857590, 2.753756587965525, 3.603837962831549, 4.158836116291951, 5.021640021086029, 5.336356273623024, 5.931149260594388, 6.560379872642531, 6.997268873652654, 7.796427811980465, 8.107967476419953, 8.871477307457646, 9.543582330636655, 9.989488892764292, 10.40078159850891, 10.80409860561501, 11.81357778608161, 11.95628078870494, 12.34851481276749, 13.01879973609270, 13.74914570234523, 13.90844878156037, 14.58164674187140

Graph of the $Z$-function along the critical line