Properties

Label 2-41574-1.1-c1-0-0
Degree $2$
Conductor $41574$
Sign $1$
Analytic cond. $331.970$
Root an. cond. $18.2200$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 2·7-s − 8-s + 9-s + 10-s − 2·11-s − 12-s + 2·14-s + 15-s + 16-s + 7·17-s − 18-s − 7·19-s − 20-s + 2·21-s + 2·22-s − 2·23-s + 24-s − 4·25-s − 27-s − 2·28-s − 8·29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.603·11-s − 0.288·12-s + 0.534·14-s + 0.258·15-s + 1/4·16-s + 1.69·17-s − 0.235·18-s − 1.60·19-s − 0.223·20-s + 0.436·21-s + 0.426·22-s − 0.417·23-s + 0.204·24-s − 4/5·25-s − 0.192·27-s − 0.377·28-s − 1.48·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41574 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41574 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41574\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(331.970\)
Root analytic conductor: \(18.2200\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 41574,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1633202294\)
\(L(\frac12)\) \(\approx\) \(0.1633202294\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
13 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.84833216682583, −14.48110731392389, −13.46095375019472, −13.10314873175682, −12.54564027119504, −12.13522756692083, −11.44223421689255, −11.19136502548865, −10.34194889085475, −10.06138935268847, −9.652893688596492, −8.961826658155873, −8.178536847297208, −7.839731145402296, −7.390313301492558, −6.585293759818997, −6.077316216256639, −5.729190679700250, −4.873048515595492, −4.161334771397671, −3.508127834041301, −2.872869399024357, −2.036691555810930, −1.238770072428164, −0.1795044961208321, 0.1795044961208321, 1.238770072428164, 2.036691555810930, 2.872869399024357, 3.508127834041301, 4.161334771397671, 4.873048515595492, 5.729190679700250, 6.077316216256639, 6.585293759818997, 7.390313301492558, 7.839731145402296, 8.178536847297208, 8.961826658155873, 9.652893688596492, 10.06138935268847, 10.34194889085475, 11.19136502548865, 11.44223421689255, 12.13522756692083, 12.54564027119504, 13.10314873175682, 13.46095375019472, 14.48110731392389, 14.84833216682583

Graph of the $Z$-function along the critical line