Properties

Label 2-40656-1.1-c1-0-45
Degree $2$
Conductor $40656$
Sign $-1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s + 9-s + 3·13-s + 3·15-s − 4·17-s + 19-s + 21-s − 4·23-s + 4·25-s − 27-s + 3·29-s + 2·31-s + 3·35-s − 3·37-s − 3·39-s + 4·43-s − 3·45-s − 3·47-s + 49-s + 4·51-s − 10·53-s − 57-s − 3·59-s + 2·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s + 0.832·13-s + 0.774·15-s − 0.970·17-s + 0.229·19-s + 0.218·21-s − 0.834·23-s + 4/5·25-s − 0.192·27-s + 0.557·29-s + 0.359·31-s + 0.507·35-s − 0.493·37-s − 0.480·39-s + 0.609·43-s − 0.447·45-s − 0.437·47-s + 1/7·49-s + 0.560·51-s − 1.37·53-s − 0.132·57-s − 0.390·59-s + 0.256·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.33313498924091, −14.56057931606043, −13.87849590566788, −13.50493855030554, −12.77761034027900, −12.34658600917569, −11.90313130226026, −11.34065497210532, −10.97989295614509, −10.49089017976752, −9.780903198229255, −9.202441870498393, −8.516661600840557, −8.091579632012934, −7.543771143109508, −6.886323299265794, −6.368779403174509, −5.929662300152402, −4.998446059788740, −4.532682237329573, −3.861240537246370, −3.481090929799379, −2.626087906419354, −1.681084886201869, −0.7334016322994767, 0, 0.7334016322994767, 1.681084886201869, 2.626087906419354, 3.481090929799379, 3.861240537246370, 4.532682237329573, 4.998446059788740, 5.929662300152402, 6.368779403174509, 6.886323299265794, 7.543771143109508, 8.091579632012934, 8.516661600840557, 9.202441870498393, 9.780903198229255, 10.49089017976752, 10.97989295614509, 11.34065497210532, 11.90313130226026, 12.34658600917569, 12.77761034027900, 13.50493855030554, 13.87849590566788, 14.56057931606043, 15.33313498924091

Graph of the $Z$-function along the critical line