Properties

Label 2-40656-1.1-c1-0-43
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s + 9-s + 5·13-s + 15-s − 7·17-s + 6·19-s − 21-s + 4·23-s − 4·25-s + 27-s + 9·29-s + 2·31-s − 35-s + 9·37-s + 5·39-s − 7·41-s + 6·43-s + 45-s − 2·47-s + 49-s − 7·51-s + 3·53-s + 6·57-s − 2·59-s + 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.38·13-s + 0.258·15-s − 1.69·17-s + 1.37·19-s − 0.218·21-s + 0.834·23-s − 4/5·25-s + 0.192·27-s + 1.67·29-s + 0.359·31-s − 0.169·35-s + 1.47·37-s + 0.800·39-s − 1.09·41-s + 0.914·43-s + 0.149·45-s − 0.291·47-s + 1/7·49-s − 0.980·51-s + 0.412·53-s + 0.794·57-s − 0.260·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.802008001\)
\(L(\frac12)\) \(\approx\) \(3.802008001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73206665273298, −14.10617849851054, −13.56678322976717, −13.38695632188502, −12.99103165251775, −12.15025535433101, −11.58213901198582, −11.13950357966799, −10.49020426577242, −9.976764658183087, −9.422946869263134, −8.857753288727055, −8.580351570352612, −7.845190193769502, −7.239003453348615, −6.537692969373596, −6.224944745417559, −5.544722826987725, −4.703348056707894, −4.242630329835159, −3.442318060825744, −2.906282540124470, −2.276347853054972, −1.407653007570483, −0.7264081504946583, 0.7264081504946583, 1.407653007570483, 2.276347853054972, 2.906282540124470, 3.442318060825744, 4.242630329835159, 4.703348056707894, 5.544722826987725, 6.224944745417559, 6.537692969373596, 7.239003453348615, 7.845190193769502, 8.580351570352612, 8.857753288727055, 9.422946869263134, 9.976764658183087, 10.49020426577242, 11.13950357966799, 11.58213901198582, 12.15025535433101, 12.99103165251775, 13.38695632188502, 13.56678322976717, 14.10617849851054, 14.73206665273298

Graph of the $Z$-function along the critical line