Properties

Label 2-40535-1.1-c1-0-5
Degree $2$
Conductor $40535$
Sign $-1$
Analytic cond. $323.673$
Root an. cond. $17.9909$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·4-s + 5-s − 4·7-s + 9-s + 4·12-s + 4·13-s − 2·15-s + 4·16-s − 17-s − 5·19-s − 2·20-s + 8·21-s + 23-s + 25-s + 4·27-s + 8·28-s − 7·29-s + 4·31-s − 4·35-s − 2·36-s + 6·37-s − 8·39-s + 45-s − 7·47-s − 8·48-s + 9·49-s + ⋯
L(s)  = 1  − 1.15·3-s − 4-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.15·12-s + 1.10·13-s − 0.516·15-s + 16-s − 0.242·17-s − 1.14·19-s − 0.447·20-s + 1.74·21-s + 0.208·23-s + 1/5·25-s + 0.769·27-s + 1.51·28-s − 1.29·29-s + 0.718·31-s − 0.676·35-s − 1/3·36-s + 0.986·37-s − 1.28·39-s + 0.149·45-s − 1.02·47-s − 1.15·48-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40535 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40535\)    =    \(5 \cdot 11^{2} \cdot 67\)
Sign: $-1$
Analytic conductor: \(323.673\)
Root analytic conductor: \(17.9909\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40535,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 - T \)
11 \( 1 \)
67 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.99138000309836, −14.52125051455633, −13.77427150175278, −13.26127622332492, −12.98881338281872, −12.63666316175966, −11.98227812507170, −11.25916182854838, −10.85169269271480, −10.29918293830595, −9.717380518417185, −9.393548801811795, −8.667342596025192, −8.345482919996935, −7.395628350257439, −6.585697274461859, −6.237439437737247, −5.900781189617171, −5.282216828803224, −4.581828041895711, −3.989289473389525, −3.369308398688899, −2.667917784680667, −1.543472109421876, −0.6546841716290127, 0, 0.6546841716290127, 1.543472109421876, 2.667917784680667, 3.369308398688899, 3.989289473389525, 4.581828041895711, 5.282216828803224, 5.900781189617171, 6.237439437737247, 6.585697274461859, 7.395628350257439, 8.345482919996935, 8.667342596025192, 9.393548801811795, 9.717380518417185, 10.29918293830595, 10.85169269271480, 11.25916182854838, 11.98227812507170, 12.63666316175966, 12.98881338281872, 13.26127622332492, 13.77427150175278, 14.52125051455633, 14.99138000309836

Graph of the $Z$-function along the critical line