Properties

Label 2-40432-1.1-c1-0-8
Degree $2$
Conductor $40432$
Sign $-1$
Analytic cond. $322.851$
Root an. cond. $17.9680$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s − 7-s − 2·9-s − 5·13-s − 3·15-s − 3·17-s − 21-s + 3·23-s + 4·25-s − 5·27-s − 3·29-s + 8·31-s + 3·35-s − 2·37-s − 5·39-s + 3·41-s + 43-s + 6·45-s + 9·47-s + 49-s − 3·51-s − 3·53-s + 9·59-s − 7·61-s + 2·63-s + 15·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s − 0.377·7-s − 2/3·9-s − 1.38·13-s − 0.774·15-s − 0.727·17-s − 0.218·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s − 0.557·29-s + 1.43·31-s + 0.507·35-s − 0.328·37-s − 0.800·39-s + 0.468·41-s + 0.152·43-s + 0.894·45-s + 1.31·47-s + 1/7·49-s − 0.420·51-s − 0.412·53-s + 1.17·59-s − 0.896·61-s + 0.251·63-s + 1.86·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40432\)    =    \(2^{4} \cdot 7 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(322.851\)
Root analytic conductor: \(17.9680\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 40432,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.92623037834850, −14.78170481243717, −13.92158180564169, −13.66234489047458, −12.83450752682560, −12.42720186640539, −11.88305024724723, −11.47423276725354, −10.94749641018408, −10.31388813213465, −9.648152153962496, −9.087504908358294, −8.698507062296115, −7.896492442474477, −7.776491286754906, −6.993705773980753, −6.616742908964949, −5.672537166407992, −5.102305495595044, −4.305607331669766, −3.998208273890279, −3.072583824278691, −2.761535879891882, −2.036296300523445, −0.7211986534966410, 0, 0.7211986534966410, 2.036296300523445, 2.761535879891882, 3.072583824278691, 3.998208273890279, 4.305607331669766, 5.102305495595044, 5.672537166407992, 6.616742908964949, 6.993705773980753, 7.776491286754906, 7.896492442474477, 8.698507062296115, 9.087504908358294, 9.648152153962496, 10.31388813213465, 10.94749641018408, 11.47423276725354, 11.88305024724723, 12.42720186640539, 12.83450752682560, 13.66234489047458, 13.92158180564169, 14.78170481243717, 14.92623037834850

Graph of the $Z$-function along the critical line