Properties

Label 2-398544-1.1-c1-0-2
Degree $2$
Conductor $398544$
Sign $1$
Analytic cond. $3182.38$
Root an. cond. $56.4126$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 2·13-s + 8·17-s − 2·21-s − 23-s − 5·25-s − 27-s − 2·29-s − 4·31-s − 6·37-s + 2·39-s − 10·41-s − 6·43-s − 3·49-s − 8·51-s − 12·53-s + 4·59-s − 10·61-s + 2·63-s − 6·67-s + 69-s + 2·73-s + 5·75-s − 6·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 0.554·13-s + 1.94·17-s − 0.436·21-s − 0.208·23-s − 25-s − 0.192·27-s − 0.371·29-s − 0.718·31-s − 0.986·37-s + 0.320·39-s − 1.56·41-s − 0.914·43-s − 3/7·49-s − 1.12·51-s − 1.64·53-s + 0.520·59-s − 1.28·61-s + 0.251·63-s − 0.733·67-s + 0.120·69-s + 0.234·73-s + 0.577·75-s − 0.675·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 398544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 398544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(398544\)    =    \(2^{4} \cdot 3 \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(3182.38\)
Root analytic conductor: \(56.4126\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 398544,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5449583410\)
\(L(\frac12)\) \(\approx\) \(0.5449583410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.26354961497634, −12.07899431940263, −11.46612809680372, −11.28995848307764, −10.55542166960030, −10.23985366717784, −9.777057730140619, −9.481885306493502, −8.734025312917460, −8.281533953068271, −7.782222952682900, −7.463966799470973, −7.058905571966491, −6.276756472366006, −5.997570781444931, −5.315188873880454, −5.071140524018755, −4.684402013098421, −3.865699395014191, −3.468067257842802, −3.002784947155731, −2.070477565569722, −1.608849016525959, −1.248149542433031, −0.1936649652384394, 0.1936649652384394, 1.248149542433031, 1.608849016525959, 2.070477565569722, 3.002784947155731, 3.468067257842802, 3.865699395014191, 4.684402013098421, 5.071140524018755, 5.315188873880454, 5.997570781444931, 6.276756472366006, 7.058905571966491, 7.463966799470973, 7.782222952682900, 8.281533953068271, 8.734025312917460, 9.481885306493502, 9.777057730140619, 10.23985366717784, 10.55542166960030, 11.28995848307764, 11.46612809680372, 12.07899431940263, 12.26354961497634

Graph of the $Z$-function along the critical line