Properties

Label 2-39600-1.1-c1-0-97
Degree $2$
Conductor $39600$
Sign $-1$
Analytic cond. $316.207$
Root an. cond. $17.7822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s − 6·13-s − 4·17-s + 2·19-s + 8·23-s + 6·37-s + 10·43-s − 3·49-s + 14·53-s − 12·59-s − 14·61-s + 4·67-s − 6·73-s − 2·77-s − 2·79-s − 16·83-s + 14·89-s − 12·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 8·119-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s − 1.66·13-s − 0.970·17-s + 0.458·19-s + 1.66·23-s + 0.986·37-s + 1.52·43-s − 3/7·49-s + 1.92·53-s − 1.56·59-s − 1.79·61-s + 0.488·67-s − 0.702·73-s − 0.227·77-s − 0.225·79-s − 1.75·83-s + 1.48·89-s − 1.25·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.733·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 39600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(39600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(316.207\)
Root analytic conductor: \(17.7822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 39600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01733724726700, −14.62454144540875, −14.11208132507327, −13.41886317391235, −13.06527008902383, −12.36553473292296, −11.99695624360975, −11.34407067293953, −10.86783878754921, −10.47011753213102, −9.674850938457952, −9.198101831007835, −8.827814222784940, −7.876865502561420, −7.650103190788838, −7.021864733800365, −6.517581711266822, −5.532487629274101, −5.223530425904808, −4.466341260520836, −4.236346133176533, −2.889490712538370, −2.724181405834627, −1.843581222694258, −0.9965088536222552, 0, 0.9965088536222552, 1.843581222694258, 2.724181405834627, 2.889490712538370, 4.236346133176533, 4.466341260520836, 5.223530425904808, 5.532487629274101, 6.517581711266822, 7.021864733800365, 7.650103190788838, 7.876865502561420, 8.827814222784940, 9.198101831007835, 9.674850938457952, 10.47011753213102, 10.86783878754921, 11.34407067293953, 11.99695624360975, 12.36553473292296, 13.06527008902383, 13.41886317391235, 14.11208132507327, 14.62454144540875, 15.01733724726700

Graph of the $Z$-function along the critical line