Properties

Label 2-39600-1.1-c1-0-31
Degree $2$
Conductor $39600$
Sign $1$
Analytic cond. $316.207$
Root an. cond. $17.7822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s − 6·13-s + 2·17-s + 4·19-s + 10·29-s − 6·37-s − 2·41-s + 4·43-s + 8·47-s − 7·49-s − 10·53-s − 4·59-s − 2·61-s − 4·67-s − 8·71-s − 2·73-s + 8·79-s + 12·83-s + 6·89-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s − 1.66·13-s + 0.485·17-s + 0.917·19-s + 1.85·29-s − 0.986·37-s − 0.312·41-s + 0.609·43-s + 1.16·47-s − 49-s − 1.37·53-s − 0.520·59-s − 0.256·61-s − 0.488·67-s − 0.949·71-s − 0.234·73-s + 0.900·79-s + 1.31·83-s + 0.635·89-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 39600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(39600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(316.207\)
Root analytic conductor: \(17.7822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 39600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.939549676\)
\(L(\frac12)\) \(\approx\) \(1.939549676\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.72265469674490, −14.22244408304544, −13.92325292679160, −13.31995557977405, −12.46386309720638, −12.13668846690863, −11.97129498345862, −11.09609320468096, −10.54601650233434, −9.965574263495164, −9.597756795260887, −9.038170942227119, −8.354205506209427, −7.736280590172995, −7.303171355703238, −6.742291263848008, −6.091494594150493, −5.405514080564088, −4.782313845408766, −4.461236083981897, −3.391098151194264, −2.981838362034340, −2.225631154554469, −1.395567461025830, −0.5231253943039435, 0.5231253943039435, 1.395567461025830, 2.225631154554469, 2.981838362034340, 3.391098151194264, 4.461236083981897, 4.782313845408766, 5.405514080564088, 6.091494594150493, 6.742291263848008, 7.303171355703238, 7.736280590172995, 8.354205506209427, 9.038170942227119, 9.597756795260887, 9.965574263495164, 10.54601650233434, 11.09609320468096, 11.97129498345862, 12.13668846690863, 12.46386309720638, 13.31995557977405, 13.92325292679160, 14.22244408304544, 14.72265469674490

Graph of the $Z$-function along the critical line