Properties

Label 2-3950-1.1-c1-0-48
Degree $2$
Conductor $3950$
Sign $-1$
Analytic cond. $31.5409$
Root an. cond. $5.61612$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 4·11-s − 2·12-s − 2·13-s + 16-s + 2·17-s − 18-s + 4·22-s + 2·24-s + 2·26-s + 4·27-s + 8·29-s + 8·31-s − 32-s + 8·33-s − 2·34-s + 36-s − 4·37-s + 4·39-s − 10·41-s + 2·43-s − 4·44-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 1.20·11-s − 0.577·12-s − 0.554·13-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.852·22-s + 0.408·24-s + 0.392·26-s + 0.769·27-s + 1.48·29-s + 1.43·31-s − 0.176·32-s + 1.39·33-s − 0.342·34-s + 1/6·36-s − 0.657·37-s + 0.640·39-s − 1.56·41-s + 0.304·43-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3950\)    =    \(2 \cdot 5^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(31.5409\)
Root analytic conductor: \(5.61612\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.265197887657296296408135524905, −7.27509200434917567912613486449, −6.69230734927741041661200692585, −5.89496930434099859832664154716, −5.19767872419815523490952861147, −4.62210033843428065093542133900, −3.18140999314506805318435623178, −2.38696557728104345139988130388, −1.02088570685086890474467540436, 0, 1.02088570685086890474467540436, 2.38696557728104345139988130388, 3.18140999314506805318435623178, 4.62210033843428065093542133900, 5.19767872419815523490952861147, 5.89496930434099859832664154716, 6.69230734927741041661200692585, 7.27509200434917567912613486449, 8.265197887657296296408135524905

Graph of the $Z$-function along the critical line