Properties

Label 2-390402-1.1-c1-0-12
Degree $2$
Conductor $390402$
Sign $1$
Analytic cond. $3117.37$
Root an. cond. $55.8334$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·7-s − 8-s + 2·13-s − 2·14-s + 16-s − 5·25-s − 2·26-s + 2·28-s + 6·29-s − 32-s + 8·37-s + 41-s − 6·43-s − 3·49-s + 5·50-s + 2·52-s + 2·53-s − 2·56-s − 6·58-s + 8·59-s − 12·61-s + 64-s + 4·67-s − 4·71-s + 6·73-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s + 0.554·13-s − 0.534·14-s + 1/4·16-s − 25-s − 0.392·26-s + 0.377·28-s + 1.11·29-s − 0.176·32-s + 1.31·37-s + 0.156·41-s − 0.914·43-s − 3/7·49-s + 0.707·50-s + 0.277·52-s + 0.274·53-s − 0.267·56-s − 0.787·58-s + 1.04·59-s − 1.53·61-s + 1/8·64-s + 0.488·67-s − 0.474·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390402 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390402 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390402\)    =    \(2 \cdot 3^{2} \cdot 23^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(3117.37\)
Root analytic conductor: \(55.8334\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 390402,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.070217263\)
\(L(\frac12)\) \(\approx\) \(2.070217263\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
23 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.20081185790646, −11.93346110435289, −11.48229871664628, −11.11403034571744, −10.56086787055573, −10.31443065418185, −9.627302475509772, −9.356933788781727, −8.803485919051547, −8.276365981879490, −7.921480077458811, −7.706985130766077, −6.967224026704199, −6.382954352983739, −6.243334246058172, −5.416912094929806, −5.110396869498690, −4.399576434216699, −3.989728688342036, −3.345063086368182, −2.744858452288567, −2.188299310907251, −1.614259138107595, −1.090048256431413, −0.4494827860124323, 0.4494827860124323, 1.090048256431413, 1.614259138107595, 2.188299310907251, 2.744858452288567, 3.345063086368182, 3.989728688342036, 4.399576434216699, 5.110396869498690, 5.416912094929806, 6.243334246058172, 6.382954352983739, 6.967224026704199, 7.706985130766077, 7.921480077458811, 8.276365981879490, 8.803485919051547, 9.356933788781727, 9.627302475509772, 10.31443065418185, 10.56086787055573, 11.11403034571744, 11.48229871664628, 11.93346110435289, 12.20081185790646

Graph of the $Z$-function along the critical line