Properties

Label 2-388416-1.1-c1-0-1
Degree $2$
Conductor $388416$
Sign $1$
Analytic cond. $3101.51$
Root an. cond. $55.6912$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 7-s + 9-s − 2·13-s + 2·15-s + 21-s − 25-s − 27-s + 2·29-s + 8·31-s + 2·35-s − 6·37-s + 2·39-s + 6·41-s + 4·43-s − 2·45-s + 49-s − 14·53-s − 8·59-s + 14·61-s − 63-s + 4·65-s + 4·67-s + 8·71-s − 10·73-s + 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s − 0.554·13-s + 0.516·15-s + 0.218·21-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.338·35-s − 0.986·37-s + 0.320·39-s + 0.937·41-s + 0.609·43-s − 0.298·45-s + 1/7·49-s − 1.92·53-s − 1.04·59-s + 1.79·61-s − 0.125·63-s + 0.496·65-s + 0.488·67-s + 0.949·71-s − 1.17·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388416\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(3101.51\)
Root analytic conductor: \(55.6912\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388416,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2257720898\)
\(L(\frac12)\) \(\approx\) \(0.2257720898\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48025565085420, −11.93461238729572, −11.67199889419207, −11.10306208676709, −10.80093376226092, −10.17443570366075, −9.831056053287646, −9.395260134873124, −8.808184036032298, −8.274726494670563, −7.811510976551087, −7.503854882250906, −6.872300449037361, −6.486017547289278, −6.086078989712077, −5.394323177635336, −4.970652533684839, −4.498785327612005, −3.899046878669626, −3.641295480028318, −2.662124961452605, −2.607441827339703, −1.519375565888635, −1.014959236955846, −0.1443692592918506, 0.1443692592918506, 1.014959236955846, 1.519375565888635, 2.607441827339703, 2.662124961452605, 3.641295480028318, 3.899046878669626, 4.498785327612005, 4.970652533684839, 5.394323177635336, 6.086078989712077, 6.486017547289278, 6.872300449037361, 7.503854882250906, 7.811510976551087, 8.274726494670563, 8.808184036032298, 9.395260134873124, 9.831056053287646, 10.17443570366075, 10.80093376226092, 11.10306208676709, 11.67199889419207, 11.93461238729572, 12.48025565085420

Graph of the $Z$-function along the critical line