Properties

Label 2-388416-1.1-c1-0-82
Degree $2$
Conductor $388416$
Sign $-1$
Analytic cond. $3101.51$
Root an. cond. $55.6912$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 7-s + 9-s − 3·11-s − 5·13-s + 3·15-s + 2·19-s − 21-s + 6·23-s + 4·25-s − 27-s − 6·29-s − 4·31-s + 3·33-s − 3·35-s + 11·37-s + 5·39-s + 12·41-s − 43-s − 3·45-s − 12·47-s + 49-s + 9·53-s + 9·55-s − 2·57-s − 12·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 1.38·13-s + 0.774·15-s + 0.458·19-s − 0.218·21-s + 1.25·23-s + 4/5·25-s − 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.522·33-s − 0.507·35-s + 1.80·37-s + 0.800·39-s + 1.87·41-s − 0.152·43-s − 0.447·45-s − 1.75·47-s + 1/7·49-s + 1.23·53-s + 1.21·55-s − 0.264·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388416\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(3101.51\)
Root analytic conductor: \(55.6912\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388416,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57271762156802, −12.25553458412310, −11.65768599416323, −11.37037286934360, −10.92802453286502, −10.73568035081475, −9.951304351799266, −9.525733530038576, −9.181497084124552, −8.495297928688423, −7.863472210335002, −7.573457670954945, −7.435310002201619, −6.885873014962444, −6.148164000695609, −5.664499009369479, −5.039987911210806, −4.831101766292344, −4.307151271377241, −3.794568506897518, −3.102169927848824, −2.690466775239625, −2.055121682450859, −1.227441873377578, −0.5464948673780422, 0, 0.5464948673780422, 1.227441873377578, 2.055121682450859, 2.690466775239625, 3.102169927848824, 3.794568506897518, 4.307151271377241, 4.831101766292344, 5.039987911210806, 5.664499009369479, 6.148164000695609, 6.885873014962444, 7.435310002201619, 7.573457670954945, 7.863472210335002, 8.495297928688423, 9.181497084124552, 9.525733530038576, 9.951304351799266, 10.73568035081475, 10.92802453286502, 11.37037286934360, 11.65768599416323, 12.25553458412310, 12.57271762156802

Graph of the $Z$-function along the critical line