Properties

Label 2-388080-1.1-c1-0-193
Degree $2$
Conductor $388080$
Sign $-1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 2·17-s + 2·19-s − 6·23-s + 25-s + 2·29-s − 6·37-s − 2·41-s + 2·43-s − 2·47-s + 2·53-s + 55-s + 8·59-s − 4·61-s + 4·67-s + 2·71-s + 10·73-s − 4·79-s + 12·83-s + 2·85-s − 2·95-s + 18·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 0.485·17-s + 0.458·19-s − 1.25·23-s + 1/5·25-s + 0.371·29-s − 0.986·37-s − 0.312·41-s + 0.304·43-s − 0.291·47-s + 0.274·53-s + 0.134·55-s + 1.04·59-s − 0.512·61-s + 0.488·67-s + 0.237·71-s + 1.17·73-s − 0.450·79-s + 1.31·83-s + 0.216·85-s − 0.205·95-s + 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66645680412384, −12.19509446993940, −11.71978852303698, −11.48738680844461, −10.85178639872309, −10.41544498424272, −10.06941949286551, −9.540565798122147, −9.023336433188699, −8.544843796548500, −8.147909916609121, −7.672182261963267, −7.256442371735263, −6.689580766768581, −6.278265984923305, −5.735229768180975, −5.135247369359823, −4.791975723485997, −4.181600523354901, −3.595409016751718, −3.348126277017752, −2.428955717038743, −2.169699191021874, −1.382447848691140, −0.6607913415840554, 0, 0.6607913415840554, 1.382447848691140, 2.169699191021874, 2.428955717038743, 3.348126277017752, 3.595409016751718, 4.181600523354901, 4.791975723485997, 5.135247369359823, 5.735229768180975, 6.278265984923305, 6.689580766768581, 7.256442371735263, 7.672182261963267, 8.147909916609121, 8.544843796548500, 9.023336433188699, 9.540565798122147, 10.06941949286551, 10.41544498424272, 10.85178639872309, 11.48738680844461, 11.71978852303698, 12.19509446993940, 12.66645680412384

Graph of the $Z$-function along the critical line