Properties

Label 2-388080-1.1-c1-0-128
Degree $2$
Conductor $388080$
Sign $1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 7·13-s + 2·17-s + 2·23-s + 25-s − 2·29-s − 3·31-s + 12·37-s + 6·41-s − 43-s + 10·47-s + 55-s − 7·59-s + 7·65-s + 4·67-s + 9·71-s − 9·73-s + 6·79-s − 11·83-s − 2·85-s + 7·89-s + 8·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 1.94·13-s + 0.485·17-s + 0.417·23-s + 1/5·25-s − 0.371·29-s − 0.538·31-s + 1.97·37-s + 0.937·41-s − 0.152·43-s + 1.45·47-s + 0.134·55-s − 0.911·59-s + 0.868·65-s + 0.488·67-s + 1.06·71-s − 1.05·73-s + 0.675·79-s − 1.20·83-s − 0.216·85-s + 0.741·89-s + 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.330851320\)
\(L(\frac12)\) \(\approx\) \(2.330851320\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46450425716737, −12.06110070980609, −11.55051909565828, −11.18143494081272, −10.67048030742855, −10.14956277077480, −9.788857968899782, −9.252025761513610, −9.011102332747595, −8.236853419723608, −7.750519159679654, −7.458919404831716, −7.172083883078133, −6.514805546156044, −5.818274062646116, −5.566990163948323, −4.844113306061545, −4.528473085792094, −4.088710068512011, −3.254083115236705, −2.951904057535175, −2.261238264999069, −1.921914785439941, −0.7953127369186482, −0.5217526184498437, 0.5217526184498437, 0.7953127369186482, 1.921914785439941, 2.261238264999069, 2.951904057535175, 3.254083115236705, 4.088710068512011, 4.528473085792094, 4.844113306061545, 5.566990163948323, 5.818274062646116, 6.514805546156044, 7.172083883078133, 7.458919404831716, 7.750519159679654, 8.236853419723608, 9.011102332747595, 9.252025761513610, 9.788857968899782, 10.14956277077480, 10.67048030742855, 11.18143494081272, 11.55051909565828, 12.06110070980609, 12.46450425716737

Graph of the $Z$-function along the critical line