Properties

Label 2-385728-1.1-c1-0-155
Degree $2$
Conductor $385728$
Sign $-1$
Analytic cond. $3080.05$
Root an. cond. $55.4982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 4·11-s + 2·13-s − 2·15-s − 2·17-s − 4·19-s − 25-s + 27-s + 6·29-s + 8·31-s + 4·33-s + 2·37-s + 2·39-s − 41-s − 4·43-s − 2·45-s − 12·47-s − 2·51-s + 6·53-s − 8·55-s − 4·57-s − 4·59-s − 10·61-s − 4·65-s − 12·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.516·15-s − 0.485·17-s − 0.917·19-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.696·33-s + 0.328·37-s + 0.320·39-s − 0.156·41-s − 0.609·43-s − 0.298·45-s − 1.75·47-s − 0.280·51-s + 0.824·53-s − 1.07·55-s − 0.529·57-s − 0.520·59-s − 1.28·61-s − 0.496·65-s − 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(385728\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(3080.05\)
Root analytic conductor: \(55.4982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 385728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
41 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52576458271238, −12.19676416386030, −11.86653351207019, −11.31928678778028, −11.05152860647907, −10.32954520426650, −10.05295411297447, −9.436384297278621, −8.949248564744482, −8.505326699647431, −8.304286662723773, −7.729779057545532, −7.263765932908127, −6.630442518551831, −6.295975300640926, −6.040883545723984, −4.943915446549702, −4.555687755530121, −4.254415753241129, −3.633927496744391, −3.273716510775845, −2.688152285973370, −1.970583141413864, −1.431926227197804, −0.7985930684633813, 0, 0.7985930684633813, 1.431926227197804, 1.970583141413864, 2.688152285973370, 3.273716510775845, 3.633927496744391, 4.254415753241129, 4.555687755530121, 4.943915446549702, 6.040883545723984, 6.295975300640926, 6.630442518551831, 7.263765932908127, 7.729779057545532, 8.304286662723773, 8.505326699647431, 8.949248564744482, 9.436384297278621, 10.05295411297447, 10.32954520426650, 11.05152860647907, 11.31928678778028, 11.86653351207019, 12.19676416386030, 12.52576458271238

Graph of the $Z$-function along the critical line