Properties

Label 2-383792-1.1-c1-0-14
Degree $2$
Conductor $383792$
Sign $-1$
Analytic cond. $3064.59$
Root an. cond. $55.3587$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 7-s − 2·9-s − 5·11-s − 2·13-s − 2·15-s + 2·19-s − 21-s + 4·23-s − 25-s + 5·27-s + 3·29-s + 31-s + 5·33-s + 2·35-s − 37-s + 2·39-s − 6·41-s − 8·43-s − 4·45-s − 12·47-s − 6·49-s − 14·53-s − 10·55-s − 2·57-s + 3·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 0.377·7-s − 2/3·9-s − 1.50·11-s − 0.554·13-s − 0.516·15-s + 0.458·19-s − 0.218·21-s + 0.834·23-s − 1/5·25-s + 0.962·27-s + 0.557·29-s + 0.179·31-s + 0.870·33-s + 0.338·35-s − 0.164·37-s + 0.320·39-s − 0.937·41-s − 1.21·43-s − 0.596·45-s − 1.75·47-s − 6/7·49-s − 1.92·53-s − 1.34·55-s − 0.264·57-s + 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383792\)    =    \(2^{4} \cdot 17^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(3064.59\)
Root analytic conductor: \(55.3587\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 383792,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 6 T + p T^{2} \) 1.79.g
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78589626722913, −12.24991449276253, −11.60586888707912, −11.40527293925509, −10.96037341606390, −10.34023612928511, −10.03465349215178, −9.753280764621279, −9.104786231744511, −8.494331407014280, −8.187995305570446, −7.740431697948710, −7.115487890313136, −6.618796024539292, −6.176872943319788, −5.635236384154489, −5.217575355714009, −4.856702988915364, −4.640638696270799, −3.481347552991476, −2.988023970732674, −2.723414951234073, −1.862812863158823, −1.587207258151070, −0.5907071961988957, 0, 0.5907071961988957, 1.587207258151070, 1.862812863158823, 2.723414951234073, 2.988023970732674, 3.481347552991476, 4.640638696270799, 4.856702988915364, 5.217575355714009, 5.635236384154489, 6.176872943319788, 6.618796024539292, 7.115487890313136, 7.740431697948710, 8.187995305570446, 8.494331407014280, 9.104786231744511, 9.753280764621279, 10.03465349215178, 10.34023612928511, 10.96037341606390, 11.40527293925509, 11.60586888707912, 12.24991449276253, 12.78589626722913

Graph of the $Z$-function along the critical line