Properties

Label 2-383792-1.1-c1-0-8
Degree $2$
Conductor $383792$
Sign $-1$
Analytic cond. $3064.59$
Root an. cond. $55.3587$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s − 2·9-s + 3·11-s + 5·13-s + 4·15-s − 5·19-s − 6·23-s + 11·25-s + 5·27-s + 5·29-s − 6·31-s − 3·33-s − 6·37-s − 5·39-s − 12·41-s − 3·43-s + 8·45-s − 2·47-s − 7·49-s − 2·53-s − 12·55-s + 5·57-s − 4·59-s − 13·61-s − 20·65-s + 12·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s − 2/3·9-s + 0.904·11-s + 1.38·13-s + 1.03·15-s − 1.14·19-s − 1.25·23-s + 11/5·25-s + 0.962·27-s + 0.928·29-s − 1.07·31-s − 0.522·33-s − 0.986·37-s − 0.800·39-s − 1.87·41-s − 0.457·43-s + 1.19·45-s − 0.291·47-s − 49-s − 0.274·53-s − 1.61·55-s + 0.662·57-s − 0.520·59-s − 1.66·61-s − 2.48·65-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383792\)    =    \(2^{4} \cdot 17^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(3064.59\)
Root analytic conductor: \(55.3587\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 383792,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + p T^{2} \) 1.79.a
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48504803660151, −12.04447891655043, −11.80894488066252, −11.42202000279249, −11.00666685752993, −10.58957648694536, −10.27787980125873, −9.406236410156448, −8.878535539645775, −8.452230539266781, −8.258875759156075, −7.843400604204278, −7.041584399219808, −6.670649884208268, −6.323968794841251, −5.859911002435337, −5.111867061782986, −4.719054880005502, −4.032600787568707, −3.831051698666676, −3.303809664143655, −2.847181453968776, −1.738161987091542, −1.419782212381394, −0.4427781542713456, 0, 0.4427781542713456, 1.419782212381394, 1.738161987091542, 2.847181453968776, 3.303809664143655, 3.831051698666676, 4.032600787568707, 4.719054880005502, 5.111867061782986, 5.859911002435337, 6.323968794841251, 6.670649884208268, 7.041584399219808, 7.843400604204278, 8.258875759156075, 8.452230539266781, 8.878535539645775, 9.406236410156448, 10.27787980125873, 10.58957648694536, 11.00666685752993, 11.42202000279249, 11.80894488066252, 12.04447891655043, 12.48504803660151

Graph of the $Z$-function along the critical line