Properties

Label 383792.g
Number of curves $1$
Conductor $383792$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 383792.g1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(17\)\(1\)
\(83\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 383792.g do not have complex multiplication.

Modular form 383792.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} - 2 q^{9} + 3 q^{11} + 5 q^{13} + 4 q^{15} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 383792.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
383792.g1 383792g1 \([0, -1, 0, -16280, 1139056]\) \(-4826809/2822\) \(-279004035964928\) \([]\) \(1658880\) \(1.4745\) \(\Gamma_0(N)\)-optimal