Properties

Label 2-381150-1.1-c1-0-55
Degree $2$
Conductor $381150$
Sign $1$
Analytic cond. $3043.49$
Root an. cond. $55.1679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s − 6·13-s + 14-s + 16-s − 8·19-s − 6·23-s + 6·26-s − 28-s + 2·29-s + 10·31-s − 32-s + 6·37-s + 8·38-s − 4·41-s + 2·43-s + 6·46-s − 8·47-s + 49-s − 6·52-s + 56-s − 2·58-s + 12·59-s + 2·61-s − 10·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s − 1.66·13-s + 0.267·14-s + 1/4·16-s − 1.83·19-s − 1.25·23-s + 1.17·26-s − 0.188·28-s + 0.371·29-s + 1.79·31-s − 0.176·32-s + 0.986·37-s + 1.29·38-s − 0.624·41-s + 0.304·43-s + 0.884·46-s − 1.16·47-s + 1/7·49-s − 0.832·52-s + 0.133·56-s − 0.262·58-s + 1.56·59-s + 0.256·61-s − 1.27·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 381150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 381150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(381150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(3043.49\)
Root analytic conductor: \(55.1679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 381150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9410506538\)
\(L(\frac12)\) \(\approx\) \(0.9410506538\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.45864732451823, −11.99185016904462, −11.55613515832848, −11.14520086415917, −10.43046379806258, −10.14729746226587, −9.765529059474637, −9.544884466719625, −8.712350663031870, −8.364535550791500, −8.045968602666762, −7.520308665337734, −6.893441375946732, −6.570909332082159, −6.173616286490678, −5.622921635938841, −4.819117906693998, −4.604476983192030, −3.944518663265072, −3.361355719183426, −2.554216847746652, −2.330214350874626, −1.868769445790557, −0.8523798123694757, −0.3410335529892947, 0.3410335529892947, 0.8523798123694757, 1.868769445790557, 2.330214350874626, 2.554216847746652, 3.361355719183426, 3.944518663265072, 4.604476983192030, 4.819117906693998, 5.622921635938841, 6.173616286490678, 6.570909332082159, 6.893441375946732, 7.520308665337734, 8.045968602666762, 8.364535550791500, 8.712350663031870, 9.544884466719625, 9.765529059474637, 10.14729746226587, 10.43046379806258, 11.14520086415917, 11.55613515832848, 11.99185016904462, 12.45864732451823

Graph of the $Z$-function along the critical line