Properties

Label 2-37440-1.1-c1-0-122
Degree $2$
Conductor $37440$
Sign $-1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 3·11-s − 13-s + 3·17-s − 4·19-s − 9·23-s + 25-s − 6·29-s − 2·31-s + 35-s + 37-s + 3·41-s + 2·43-s − 6·47-s − 6·49-s + 9·53-s + 3·55-s + 12·59-s − 5·61-s − 65-s − 4·67-s + 9·71-s + 14·73-s + 3·77-s + 7·79-s + 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 0.904·11-s − 0.277·13-s + 0.727·17-s − 0.917·19-s − 1.87·23-s + 1/5·25-s − 1.11·29-s − 0.359·31-s + 0.169·35-s + 0.164·37-s + 0.468·41-s + 0.304·43-s − 0.875·47-s − 6/7·49-s + 1.23·53-s + 0.404·55-s + 1.56·59-s − 0.640·61-s − 0.124·65-s − 0.488·67-s + 1.06·71-s + 1.63·73-s + 0.341·77-s + 0.787·79-s + 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01042570026719, −14.43768393328948, −14.29252108963695, −13.62408550999054, −13.03344130490881, −12.45396285004873, −12.05256763271569, −11.43452634889886, −10.98210287300761, −10.29222546969276, −9.788436479806993, −9.375014760534885, −8.749889498424843, −8.013983914799363, −7.795451604115936, −6.806375544619681, −6.514442426758775, −5.658838192499456, −5.439181598449173, −4.437500085019651, −3.984408664814212, −3.393273280704977, −2.310389061102857, −1.922779677184811, −1.107170418716238, 0, 1.107170418716238, 1.922779677184811, 2.310389061102857, 3.393273280704977, 3.984408664814212, 4.437500085019651, 5.439181598449173, 5.658838192499456, 6.514442426758775, 6.806375544619681, 7.795451604115936, 8.013983914799363, 8.749889498424843, 9.375014760534885, 9.788436479806993, 10.29222546969276, 10.98210287300761, 11.43452634889886, 12.05256763271569, 12.45396285004873, 13.03344130490881, 13.62408550999054, 14.29252108963695, 14.43768393328948, 15.01042570026719

Graph of the $Z$-function along the critical line