Properties

Label 2-372645-1.1-c1-0-41
Degree $2$
Conductor $372645$
Sign $1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5-s − 3·11-s + 4·16-s − 3·17-s − 4·19-s + 2·20-s + 9·23-s + 25-s + 6·29-s + 2·31-s + 37-s + 3·41-s + 2·43-s + 6·44-s + 6·47-s − 9·53-s + 3·55-s + 12·59-s − 5·61-s − 8·64-s + 4·67-s + 6·68-s + 9·71-s + 14·73-s + 8·76-s − 7·79-s + ⋯
L(s)  = 1  − 4-s − 0.447·5-s − 0.904·11-s + 16-s − 0.727·17-s − 0.917·19-s + 0.447·20-s + 1.87·23-s + 1/5·25-s + 1.11·29-s + 0.359·31-s + 0.164·37-s + 0.468·41-s + 0.304·43-s + 0.904·44-s + 0.875·47-s − 1.23·53-s + 0.404·55-s + 1.56·59-s − 0.640·61-s − 64-s + 0.488·67-s + 0.727·68-s + 1.06·71-s + 1.63·73-s + 0.917·76-s − 0.787·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.754077098\)
\(L(\frac12)\) \(\approx\) \(1.754077098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.61226840584288, −12.31801620784187, −11.41543309472443, −11.15182290674396, −10.63740935265259, −10.35989260872358, −9.641484354524316, −9.361191911236166, −8.731932891438881, −8.456584247991148, −8.049649687124698, −7.575462511973704, −6.826581323881293, −6.693192405622935, −5.883975022058511, −5.343617569615586, −4.971714195224127, −4.396921166960785, −4.200544359954719, −3.444410319478481, −2.858058168973274, −2.512182126301672, −1.653220430104753, −0.7722765388614652, −0.4945450700436527, 0.4945450700436527, 0.7722765388614652, 1.653220430104753, 2.512182126301672, 2.858058168973274, 3.444410319478481, 4.200544359954719, 4.396921166960785, 4.971714195224127, 5.343617569615586, 5.883975022058511, 6.693192405622935, 6.826581323881293, 7.575462511973704, 8.049649687124698, 8.456584247991148, 8.731932891438881, 9.361191911236166, 9.641484354524316, 10.35989260872358, 10.63740935265259, 11.15182290674396, 11.41543309472443, 12.31801620784187, 12.61226840584288

Graph of the $Z$-function along the critical line