Properties

Label 2-3696-1.1-c1-0-41
Degree $2$
Conductor $3696$
Sign $-1$
Analytic cond. $29.5127$
Root an. cond. $5.43256$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 11-s + 13-s + 15-s + 4·17-s − 3·19-s − 21-s − 6·23-s − 4·25-s − 27-s + 7·29-s − 4·31-s + 33-s − 35-s + 37-s − 39-s − 4·41-s + 2·43-s − 45-s − 7·47-s + 49-s − 4·51-s + 10·53-s + 55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.277·13-s + 0.258·15-s + 0.970·17-s − 0.688·19-s − 0.218·21-s − 1.25·23-s − 4/5·25-s − 0.192·27-s + 1.29·29-s − 0.718·31-s + 0.174·33-s − 0.169·35-s + 0.164·37-s − 0.160·39-s − 0.624·41-s + 0.304·43-s − 0.149·45-s − 1.02·47-s + 1/7·49-s − 0.560·51-s + 1.37·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3696 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3696 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3696\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(29.5127\)
Root analytic conductor: \(5.43256\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3696,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.142769749401240638842099218410, −7.48081830346601360916973270588, −6.64154799609352895225991337192, −5.84727569254735575475982369360, −5.22535186346629942841947571426, −4.27400667077812408101837638391, −3.66630303675510058944233818355, −2.43871280217448199990766691349, −1.32780456660572558565910750326, 0, 1.32780456660572558565910750326, 2.43871280217448199990766691349, 3.66630303675510058944233818355, 4.27400667077812408101837638391, 5.22535186346629942841947571426, 5.84727569254735575475982369360, 6.64154799609352895225991337192, 7.48081830346601360916973270588, 8.142769749401240638842099218410

Graph of the $Z$-function along the critical line