Properties

Label 2-363090-1.1-c1-0-137
Degree $2$
Conductor $363090$
Sign $-1$
Analytic cond. $2899.28$
Root an. cond. $53.8450$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 12-s − 13-s + 15-s + 16-s − 6·17-s − 18-s + 19-s + 20-s − 24-s + 25-s + 26-s + 27-s − 6·29-s − 30-s − 32-s + 6·34-s + 36-s + 2·37-s − 38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s − 1.11·29-s − 0.182·30-s − 0.176·32-s + 1.02·34-s + 1/6·36-s + 0.328·37-s − 0.162·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363090\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(2899.28\)
Root analytic conductor: \(53.8450\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363090,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
19 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66605646163507, −12.54097088057579, −11.57446996072613, −11.30940527567775, −10.96476628397168, −10.37876158200371, −9.892087711353395, −9.520031463413106, −9.082841491152032, −8.787874580372732, −8.247585839276306, −7.688988854833357, −7.383188725000644, −6.702551208842363, −6.548404283833427, −5.692920191342706, −5.473298603172223, −4.659220600476985, −4.166688437961174, −3.702727837310284, −2.951488023956189, −2.336618138970025, −2.217625730025730, −1.425850972461958, −0.7863283539809420, 0, 0.7863283539809420, 1.425850972461958, 2.217625730025730, 2.336618138970025, 2.951488023956189, 3.702727837310284, 4.166688437961174, 4.659220600476985, 5.473298603172223, 5.692920191342706, 6.548404283833427, 6.702551208842363, 7.383188725000644, 7.688988854833357, 8.247585839276306, 8.787874580372732, 9.082841491152032, 9.520031463413106, 9.892087711353395, 10.37876158200371, 10.96476628397168, 11.30940527567775, 11.57446996072613, 12.54097088057579, 12.66605646163507

Graph of the $Z$-function along the critical line