Properties

Label 2-363090-1.1-c1-0-105
Degree $2$
Conductor $363090$
Sign $-1$
Analytic cond. $2899.28$
Root an. cond. $53.8450$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s − 5·11-s + 12-s + 13-s + 15-s + 16-s + 7·17-s − 18-s − 19-s + 20-s + 5·22-s − 8·23-s − 24-s + 25-s − 26-s + 27-s − 6·29-s − 30-s − 6·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.50·11-s + 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s + 1.69·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 1.06·22-s − 1.66·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 1.11·29-s − 0.182·30-s − 1.07·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363090\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(2899.28\)
Root analytic conductor: \(53.8450\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363090,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
19 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82652777743091, −12.20158243221264, −11.97697919524388, −11.14193266016824, −10.88744690453909, −10.23905523864980, −10.02315363988294, −9.670057150550134, −9.166934377711642, −8.535972301066530, −8.134431891304887, −7.861777661363372, −7.373228109597133, −6.982960965446244, −6.181851815773322, −5.755387608782009, −5.426259448040087, −4.889419577094410, −4.047628885436881, −3.557203235260270, −3.084031028885122, −2.525204049548941, −1.824376596010339, −1.689400234199743, −0.6885092384509064, 0, 0.6885092384509064, 1.689400234199743, 1.824376596010339, 2.525204049548941, 3.084031028885122, 3.557203235260270, 4.047628885436881, 4.889419577094410, 5.426259448040087, 5.755387608782009, 6.181851815773322, 6.982960965446244, 7.373228109597133, 7.861777661363372, 8.134431891304887, 8.535972301066530, 9.166934377711642, 9.670057150550134, 10.02315363988294, 10.23905523864980, 10.88744690453909, 11.14193266016824, 11.97697919524388, 12.20158243221264, 12.82652777743091

Graph of the $Z$-function along the critical line