Properties

Label 2-36162-1.1-c1-0-32
Degree $2$
Conductor $36162$
Sign $1$
Analytic cond. $288.755$
Root an. cond. $16.9927$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 8-s + 2·10-s + 4·11-s − 2·13-s + 16-s + 2·17-s + 4·19-s − 2·20-s − 4·22-s − 25-s + 2·26-s + 6·29-s + 8·31-s − 32-s − 2·34-s − 2·37-s − 4·38-s + 2·40-s + 41-s + 4·43-s + 4·44-s + 12·47-s + 50-s − 2·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.353·8-s + 0.632·10-s + 1.20·11-s − 0.554·13-s + 1/4·16-s + 0.485·17-s + 0.917·19-s − 0.447·20-s − 0.852·22-s − 1/5·25-s + 0.392·26-s + 1.11·29-s + 1.43·31-s − 0.176·32-s − 0.342·34-s − 0.328·37-s − 0.648·38-s + 0.316·40-s + 0.156·41-s + 0.609·43-s + 0.603·44-s + 1.75·47-s + 0.141·50-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36162\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(288.755\)
Root analytic conductor: \(16.9927\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 36162,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.820791050\)
\(L(\frac12)\) \(\approx\) \(1.820791050\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.15640778674659, −14.26983769632590, −14.09440997229101, −13.45059473072749, −12.42032226833533, −12.05524257454516, −11.93137454529127, −11.22573906829905, −10.69030826776216, −9.997693551481347, −9.580167870257720, −9.062186885324906, −8.389225320025989, −7.915375716034463, −7.467965709002796, −6.743906743787197, −6.451969785146217, −5.522173936323076, −4.942226535342508, −4.023636223889263, −3.737780178392896, −2.836587549966208, −2.207136858389373, −1.048230675815574, −0.7120053102529830, 0.7120053102529830, 1.048230675815574, 2.207136858389373, 2.836587549966208, 3.737780178392896, 4.023636223889263, 4.942226535342508, 5.522173936323076, 6.451969785146217, 6.743906743787197, 7.467965709002796, 7.915375716034463, 8.389225320025989, 9.062186885324906, 9.580167870257720, 9.997693551481347, 10.69030826776216, 11.22573906829905, 11.93137454529127, 12.05524257454516, 12.42032226833533, 13.45059473072749, 14.09440997229101, 14.26983769632590, 15.15640778674659

Graph of the $Z$-function along the critical line