Properties

Label 2-359856-1.1-c1-0-94
Degree $2$
Conductor $359856$
Sign $1$
Analytic cond. $2873.46$
Root an. cond. $53.6047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s − 17-s + 2·19-s + 9·23-s − 5·25-s + 9·29-s + 5·31-s + 2·37-s + 43-s + 9·47-s − 9·59-s + 61-s − 5·67-s − 9·71-s + 7·73-s + 10·79-s − 9·89-s + 97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.10·13-s − 0.242·17-s + 0.458·19-s + 1.87·23-s − 25-s + 1.67·29-s + 0.898·31-s + 0.328·37-s + 0.152·43-s + 1.31·47-s − 1.17·59-s + 0.128·61-s − 0.610·67-s − 1.06·71-s + 0.819·73-s + 1.12·79-s − 0.953·89-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 359856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 359856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(359856\)    =    \(2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2873.46\)
Root analytic conductor: \(53.6047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 359856,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.808765808\)
\(L(\frac12)\) \(\approx\) \(3.808765808\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.33790517057515, −12.16582041105678, −11.62667080566845, −11.04038680958227, −10.85534209433622, −10.30011165506848, −9.828781900030745, −9.246221586683815, −8.914170966423094, −8.448793525594840, −7.981839529027217, −7.484832431838689, −6.941785458037014, −6.482255256800641, −6.057771711899950, −5.564127757701324, −4.961296716017968, −4.494189661509677, −4.038166623784782, −3.347914618323136, −2.923058715109286, −2.446054507517353, −1.589175452413315, −1.057896682054789, −0.5824374539182112, 0.5824374539182112, 1.057896682054789, 1.589175452413315, 2.446054507517353, 2.923058715109286, 3.347914618323136, 4.038166623784782, 4.494189661509677, 4.961296716017968, 5.564127757701324, 6.057771711899950, 6.482255256800641, 6.941785458037014, 7.484832431838689, 7.981839529027217, 8.448793525594840, 8.914170966423094, 9.246221586683815, 9.828781900030745, 10.30011165506848, 10.85534209433622, 11.04038680958227, 11.62667080566845, 12.16582041105678, 12.33790517057515

Graph of the $Z$-function along the critical line