Properties

Label 359856.dx
Number of curves $3$
Conductor $359856$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 359856.dx have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 359856.dx do not have complex multiplication.

Modular form 359856.2.a.dx

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{13} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 359856.dx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
359856.dx1 359856dx3 \([0, 0, 0, -1249758720, -17005420566288]\) \(22759502184972288000/5831\) \(55307308203528192\) \([]\) \(51508224\) \(3.4950\)  
359856.dx2 359856dx2 \([0, 0, 0, -96126240, 347223394672]\) \(838870874148864000/40675641638471\) \(4763090947437557133299712\) \([]\) \(51508224\) \(3.4950\)  
359856.dx3 359856dx1 \([0, 0, 0, -15452640, -23252365136]\) \(31363160518656000/198257271191\) \(2579532930479918665728\) \([]\) \(17169408\) \(2.9457\) \(\Gamma_0(N)\)-optimal