Properties

Label 2-35490-1.1-c1-0-23
Degree $2$
Conductor $35490$
Sign $1$
Analytic cond. $283.389$
Root an. cond. $16.8341$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 7-s + 8-s + 9-s + 10-s − 4·11-s − 12-s + 14-s − 15-s + 16-s − 6·17-s + 18-s + 8·19-s + 20-s − 21-s − 4·22-s + 8·23-s − 24-s + 25-s − 27-s + 28-s + 2·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s − 0.288·12-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 1.83·19-s + 0.223·20-s − 0.218·21-s − 0.852·22-s + 1.66·23-s − 0.204·24-s + 1/5·25-s − 0.192·27-s + 0.188·28-s + 0.371·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35490\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(283.389\)
Root analytic conductor: \(16.8341\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35490,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.279710665\)
\(L(\frac12)\) \(\approx\) \(3.279710665\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.17958212448441, −14.28972656005383, −13.71564626239480, −13.41587097701237, −12.85890420078930, −12.47152972977303, −11.68551423980736, −11.26903476128730, −10.83614464804452, −10.36348497905595, −9.708335103575741, −9.030261197657245, −8.535063985395077, −7.632069270718977, −7.121704824214699, −6.853729417700670, −5.864359925832705, −5.418795006525001, −5.068625197876565, −4.510631568356031, −3.658964778773060, −2.898539634713534, −2.342563699402519, −1.509118656150954, −0.6261281006863611, 0.6261281006863611, 1.509118656150954, 2.342563699402519, 2.898539634713534, 3.658964778773060, 4.510631568356031, 5.068625197876565, 5.418795006525001, 5.864359925832705, 6.853729417700670, 7.121704824214699, 7.632069270718977, 8.535063985395077, 9.030261197657245, 9.708335103575741, 10.36348497905595, 10.83614464804452, 11.26903476128730, 11.68551423980736, 12.47152972977303, 12.85890420078930, 13.41587097701237, 13.71564626239480, 14.28972656005383, 15.17958212448441

Graph of the $Z$-function along the critical line