Properties

Label 2-350350-1.1-c1-0-56
Degree $2$
Conductor $350350$
Sign $-1$
Analytic cond. $2797.55$
Root an. cond. $52.8919$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 11-s − 2·12-s + 13-s + 16-s + 3·17-s − 18-s − 8·19-s + 22-s − 6·23-s + 2·24-s − 26-s + 4·27-s − 9·29-s + 4·31-s − 32-s + 2·33-s − 3·34-s + 36-s − 2·37-s + 8·38-s − 2·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.577·12-s + 0.277·13-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 1.83·19-s + 0.213·22-s − 1.25·23-s + 0.408·24-s − 0.196·26-s + 0.769·27-s − 1.67·29-s + 0.718·31-s − 0.176·32-s + 0.348·33-s − 0.514·34-s + 1/6·36-s − 0.328·37-s + 1.29·38-s − 0.320·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350350\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2797.55\)
Root analytic conductor: \(52.8919\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56546822358531, −12.32378027980701, −11.68108836023734, −11.36674655217460, −10.97274622852743, −10.50715634876107, −10.17406319032421, −9.721649900749567, −9.196141156633838, −8.527850670693098, −8.265287886328860, −7.803470288976919, −7.197838708223247, −6.700433164190904, −6.190424657575055, −5.926450029469518, −5.458344081890613, −4.857589470947570, −4.327447570082198, −3.712179351133120, −3.212293748519267, −2.296620651731405, −2.009437889628518, −1.262045429999355, −0.5109441091827911, 0, 0.5109441091827911, 1.262045429999355, 2.009437889628518, 2.296620651731405, 3.212293748519267, 3.712179351133120, 4.327447570082198, 4.857589470947570, 5.458344081890613, 5.926450029469518, 6.190424657575055, 6.700433164190904, 7.197838708223247, 7.803470288976919, 8.265287886328860, 8.527850670693098, 9.196141156633838, 9.721649900749567, 10.17406319032421, 10.50715634876107, 10.97274622852743, 11.36674655217460, 11.68108836023734, 12.32378027980701, 12.56546822358531

Graph of the $Z$-function along the critical line