Properties

Label 2-346800-1.1-c1-0-156
Degree $2$
Conductor $346800$
Sign $1$
Analytic cond. $2769.21$
Root an. cond. $52.6233$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·7-s + 9-s + 5·11-s + 6·13-s + 5·19-s + 3·21-s − 4·23-s + 27-s + 6·29-s + 5·31-s + 5·33-s − 7·37-s + 6·39-s − 10·41-s − 9·43-s − 7·47-s + 2·49-s + 9·53-s + 5·57-s − 10·61-s + 3·63-s + 13·67-s − 4·69-s − 10·71-s + 16·73-s + 15·77-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.13·7-s + 1/3·9-s + 1.50·11-s + 1.66·13-s + 1.14·19-s + 0.654·21-s − 0.834·23-s + 0.192·27-s + 1.11·29-s + 0.898·31-s + 0.870·33-s − 1.15·37-s + 0.960·39-s − 1.56·41-s − 1.37·43-s − 1.02·47-s + 2/7·49-s + 1.23·53-s + 0.662·57-s − 1.28·61-s + 0.377·63-s + 1.58·67-s − 0.481·69-s − 1.18·71-s + 1.87·73-s + 1.70·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 346800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(346800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2769.21\)
Root analytic conductor: \(52.6233\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 346800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.937317046\)
\(L(\frac12)\) \(\approx\) \(6.937317046\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40440854333278, −11.89885658593839, −11.75259057073028, −11.33185736237284, −10.78121404783733, −10.18529734559928, −9.890186398883726, −9.292007886046054, −8.728350855040296, −8.357809296605620, −8.272132616955233, −7.589329503186531, −6.933660518630924, −6.525692325252574, −6.210035691268382, −5.446067811911959, −4.952290259495073, −4.495562209157656, −3.875370208812947, −3.434922770240963, −3.157842810585144, −2.122808879895665, −1.623596142205656, −1.301888419805959, −0.6961126632323009, 0.6961126632323009, 1.301888419805959, 1.623596142205656, 2.122808879895665, 3.157842810585144, 3.434922770240963, 3.875370208812947, 4.495562209157656, 4.952290259495073, 5.446067811911959, 6.210035691268382, 6.525692325252574, 6.933660518630924, 7.589329503186531, 8.272132616955233, 8.357809296605620, 8.728350855040296, 9.292007886046054, 9.890186398883726, 10.18529734559928, 10.78121404783733, 11.33185736237284, 11.75259057073028, 11.89885658593839, 12.40440854333278

Graph of the $Z$-function along the critical line