Properties

Label 2-34496-1.1-c1-0-20
Degree $2$
Conductor $34496$
Sign $1$
Analytic cond. $275.451$
Root an. cond. $16.5967$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·5-s + 9-s + 11-s + 2·13-s − 8·15-s − 2·17-s − 8·19-s + 11·25-s + 4·27-s + 6·29-s + 2·31-s − 2·33-s + 10·37-s − 4·39-s − 10·41-s − 8·43-s + 4·45-s + 6·47-s + 4·51-s + 6·53-s + 4·55-s + 16·57-s + 6·59-s − 2·61-s + 8·65-s − 12·67-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.78·5-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 2.06·15-s − 0.485·17-s − 1.83·19-s + 11/5·25-s + 0.769·27-s + 1.11·29-s + 0.359·31-s − 0.348·33-s + 1.64·37-s − 0.640·39-s − 1.56·41-s − 1.21·43-s + 0.596·45-s + 0.875·47-s + 0.560·51-s + 0.824·53-s + 0.539·55-s + 2.11·57-s + 0.781·59-s − 0.256·61-s + 0.992·65-s − 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34496\)    =    \(2^{6} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(275.451\)
Root analytic conductor: \(16.5967\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 34496,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.121835576\)
\(L(\frac12)\) \(\approx\) \(2.121835576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93238121041905, −14.44606656229042, −13.64123303230297, −13.49275782042169, −12.91710332673917, −12.32166827826775, −11.81742032817682, −11.13897845977879, −10.66812326002357, −10.26879771011957, −9.846426027928582, −9.009421659159333, −8.687550287415561, −8.071316776516373, −6.820148786845126, −6.597989903683323, −6.118604489145280, −5.779698588072384, −4.927246045518115, −4.666647377390459, −3.726964959508371, −2.675315414680075, −2.167268206916262, −1.387291600332863, −0.6066908492704788, 0.6066908492704788, 1.387291600332863, 2.167268206916262, 2.675315414680075, 3.726964959508371, 4.666647377390459, 4.927246045518115, 5.779698588072384, 6.118604489145280, 6.597989903683323, 6.820148786845126, 8.071316776516373, 8.687550287415561, 9.009421659159333, 9.846426027928582, 10.26879771011957, 10.66812326002357, 11.13897845977879, 11.81742032817682, 12.32166827826775, 12.91710332673917, 13.49275782042169, 13.64123303230297, 14.44606656229042, 14.93238121041905

Graph of the $Z$-function along the critical line