Properties

Label 2-344850-1.1-c1-0-129
Degree $2$
Conductor $344850$
Sign $-1$
Analytic cond. $2753.64$
Root an. cond. $52.4751$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 2·7-s + 8-s + 9-s − 12-s − 4·13-s + 2·14-s + 16-s − 6·17-s + 18-s − 19-s − 2·21-s − 24-s − 4·26-s − 27-s + 2·28-s + 8·31-s + 32-s − 6·34-s + 36-s − 8·37-s − 38-s + 4·39-s + 12·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s − 1.10·13-s + 0.534·14-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.229·19-s − 0.436·21-s − 0.204·24-s − 0.784·26-s − 0.192·27-s + 0.377·28-s + 1.43·31-s + 0.176·32-s − 1.02·34-s + 1/6·36-s − 1.31·37-s − 0.162·38-s + 0.640·39-s + 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 344850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 344850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(344850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(2753.64\)
Root analytic conductor: \(52.4751\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 344850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.73258298522424, −12.30278730437152, −11.97238668167655, −11.37325876600375, −11.15089948150474, −10.69157144697711, −10.18122571976662, −9.753598876233597, −9.125939424847143, −8.664964300223689, −8.100198147538922, −7.608224791898433, −7.163251750087835, −6.624974372470258, −6.352034621831133, −5.591358298032246, −5.308771146480091, −4.662641675401265, −4.366475200071704, −4.079767971053988, −3.087689908316925, −2.632333451349661, −2.082337037673579, −1.570064778715581, −0.7584918679618581, 0, 0.7584918679618581, 1.570064778715581, 2.082337037673579, 2.632333451349661, 3.087689908316925, 4.079767971053988, 4.366475200071704, 4.662641675401265, 5.308771146480091, 5.591358298032246, 6.352034621831133, 6.624974372470258, 7.163251750087835, 7.608224791898433, 8.100198147538922, 8.664964300223689, 9.125939424847143, 9.753598876233597, 10.18122571976662, 10.69157144697711, 11.15089948150474, 11.37325876600375, 11.97238668167655, 12.30278730437152, 12.73258298522424

Graph of the $Z$-function along the critical line