Properties

Label 2-344850-1.1-c1-0-9
Degree $2$
Conductor $344850$
Sign $1$
Analytic cond. $2753.64$
Root an. cond. $52.4751$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 12-s + 4·13-s + 16-s − 6·17-s − 18-s + 19-s + 24-s − 4·26-s − 27-s + 2·29-s − 32-s + 6·34-s + 36-s − 4·37-s − 38-s − 4·39-s + 12·41-s − 6·43-s − 48-s − 7·49-s + 6·51-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.229·19-s + 0.204·24-s − 0.784·26-s − 0.192·27-s + 0.371·29-s − 0.176·32-s + 1.02·34-s + 1/6·36-s − 0.657·37-s − 0.162·38-s − 0.640·39-s + 1.87·41-s − 0.914·43-s − 0.144·48-s − 49-s + 0.840·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 344850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 344850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(344850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(2753.64\)
Root analytic conductor: \(52.4751\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 344850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5052276637\)
\(L(\frac12)\) \(\approx\) \(0.5052276637\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.44816608400097, −12.12591826213692, −11.31476919545893, −11.12229166691374, −10.96388507722731, −10.36173876577383, −9.757877707484300, −9.408056239150423, −8.964220434387266, −8.381733350044072, −8.116665550047163, −7.521896370745134, −6.872055268334341, −6.608371220788155, −6.139289279026247, −5.700774836770593, −5.060949462180263, −4.494222457576395, −4.085650712816632, −3.362582202252803, −2.870465375737696, −2.162704702361743, −1.539675733925766, −1.118482572963318, −0.2312152367974436, 0.2312152367974436, 1.118482572963318, 1.539675733925766, 2.162704702361743, 2.870465375737696, 3.362582202252803, 4.085650712816632, 4.494222457576395, 5.060949462180263, 5.700774836770593, 6.139289279026247, 6.608371220788155, 6.872055268334341, 7.521896370745134, 8.116665550047163, 8.381733350044072, 8.964220434387266, 9.408056239150423, 9.757877707484300, 10.36173876577383, 10.96388507722731, 11.12229166691374, 11.31476919545893, 12.12591826213692, 12.44816608400097

Graph of the $Z$-function along the critical line