Properties

Label 2-341775-1.1-c1-0-53
Degree $2$
Conductor $341775$
Sign $-1$
Analytic cond. $2729.08$
Root an. cond. $52.2406$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5·11-s + 4·16-s − 5·17-s + 19-s + 5·23-s − 5·29-s + 31-s − 10·37-s + 10·43-s + 10·44-s + 5·53-s − 10·59-s − 12·61-s − 8·64-s + 5·67-s + 10·68-s − 2·76-s − 4·79-s + 15·83-s + 15·89-s − 10·92-s − 5·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 4-s − 1.50·11-s + 16-s − 1.21·17-s + 0.229·19-s + 1.04·23-s − 0.928·29-s + 0.179·31-s − 1.64·37-s + 1.52·43-s + 1.50·44-s + 0.686·53-s − 1.30·59-s − 1.53·61-s − 64-s + 0.610·67-s + 1.21·68-s − 0.229·76-s − 0.450·79-s + 1.64·83-s + 1.58·89-s − 1.04·92-s − 0.507·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 341775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 341775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(341775\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(2729.08\)
Root analytic conductor: \(52.2406\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 341775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
31 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 5 T + p T^{2} \) 1.29.f
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90638153715765, −12.39698364794304, −12.10743216068062, −11.25387016019899, −10.92459800983063, −10.52065556705059, −10.16479563663193, −9.489928797173407, −9.049543513599485, −8.838980871498839, −8.279824525627844, −7.623140439260329, −7.491036171985073, −6.845695239398553, −6.144640474403363, −5.709490973834855, −5.152394218672493, −4.805191386693575, −4.439222568059088, −3.646865104173207, −3.310389809380498, −2.597271505043238, −2.129667024827030, −1.347573489453050, −0.5541540387773067, 0, 0.5541540387773067, 1.347573489453050, 2.129667024827030, 2.597271505043238, 3.310389809380498, 3.646865104173207, 4.439222568059088, 4.805191386693575, 5.152394218672493, 5.709490973834855, 6.144640474403363, 6.845695239398553, 7.491036171985073, 7.623140439260329, 8.279824525627844, 8.838980871498839, 9.049543513599485, 9.489928797173407, 10.16479563663193, 10.52065556705059, 10.92459800983063, 11.25387016019899, 12.10743216068062, 12.39698364794304, 12.90638153715765

Graph of the $Z$-function along the critical line