Properties

Label 2-336600-1.1-c1-0-18
Degree $2$
Conductor $336600$
Sign $1$
Analytic cond. $2687.76$
Root an. cond. $51.8436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s + 4·13-s − 17-s − 6·19-s + 4·23-s − 8·29-s + 6·31-s + 12·41-s − 4·43-s − 6·47-s − 7·49-s − 6·53-s + 2·61-s − 4·67-s − 8·71-s − 14·73-s − 8·79-s + 12·83-s + 8·89-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s + 1.10·13-s − 0.242·17-s − 1.37·19-s + 0.834·23-s − 1.48·29-s + 1.07·31-s + 1.87·41-s − 0.609·43-s − 0.875·47-s − 49-s − 0.824·53-s + 0.256·61-s − 0.488·67-s − 0.949·71-s − 1.63·73-s − 0.900·79-s + 1.31·83-s + 0.847·89-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336600\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(2687.76\)
Root analytic conductor: \(51.8436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 336600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.795871666\)
\(L(\frac12)\) \(\approx\) \(1.795871666\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64565251325623, −12.18089179351989, −11.50088321735307, −11.23990087030712, −10.81361289808525, −10.47064997433234, −9.757936038062570, −9.381675129931152, −8.903161932466269, −8.467453900510230, −8.097083360105399, −7.494851863767491, −6.996956874821164, −6.415367262472460, −6.129527573177074, −5.686404999778852, −4.957086707007810, −4.412961468695267, −4.121547084604448, −3.406245943710526, −3.006468325605052, −2.293138751436161, −1.666846646944975, −1.204306186098482, −0.3567919893761227, 0.3567919893761227, 1.204306186098482, 1.666846646944975, 2.293138751436161, 3.006468325605052, 3.406245943710526, 4.121547084604448, 4.412961468695267, 4.957086707007810, 5.686404999778852, 6.129527573177074, 6.415367262472460, 6.996956874821164, 7.494851863767491, 8.097083360105399, 8.467453900510230, 8.903161932466269, 9.381675129931152, 9.757936038062570, 10.47064997433234, 10.81361289808525, 11.23990087030712, 11.50088321735307, 12.18089179351989, 12.64565251325623

Graph of the $Z$-function along the critical line