Properties

Label 2-331056-1.1-c1-0-106
Degree $2$
Conductor $331056$
Sign $-1$
Analytic cond. $2643.49$
Root an. cond. $51.4149$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·13-s − 19-s − 8·23-s − 25-s + 2·29-s + 2·31-s − 8·37-s + 2·41-s + 4·43-s + 4·47-s − 7·49-s + 2·53-s + 10·61-s + 8·65-s + 16·71-s − 6·73-s + 14·79-s − 6·83-s − 18·89-s − 2·95-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.10·13-s − 0.229·19-s − 1.66·23-s − 1/5·25-s + 0.371·29-s + 0.359·31-s − 1.31·37-s + 0.312·41-s + 0.609·43-s + 0.583·47-s − 49-s + 0.274·53-s + 1.28·61-s + 0.992·65-s + 1.89·71-s − 0.702·73-s + 1.57·79-s − 0.658·83-s − 1.90·89-s − 0.205·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 331056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(331056\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(2643.49\)
Root analytic conductor: \(51.4149\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 331056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74234937334425, −12.47551738929657, −11.93833846902573, −11.41374253500018, −11.01432268244880, −10.43733676618030, −10.14064635168550, −9.657208041523554, −9.255958628268783, −8.669267407875587, −8.189774538363076, −7.992733203841016, −7.141330379325052, −6.718561376105433, −6.221653201534837, −5.812160424524036, −5.483985418089738, −4.827344288396757, −4.173037185730986, −3.774057048537376, −3.257455996449206, −2.427890238706909, −2.082305705560407, −1.495277710920840, −0.8630037570607414, 0, 0.8630037570607414, 1.495277710920840, 2.082305705560407, 2.427890238706909, 3.257455996449206, 3.774057048537376, 4.173037185730986, 4.827344288396757, 5.483985418089738, 5.812160424524036, 6.221653201534837, 6.718561376105433, 7.141330379325052, 7.992733203841016, 8.189774538363076, 8.669267407875587, 9.255958628268783, 9.657208041523554, 10.14064635168550, 10.43733676618030, 11.01432268244880, 11.41374253500018, 11.93833846902573, 12.47551738929657, 12.74234937334425

Graph of the $Z$-function along the critical line