Properties

Label 2-32976-1.1-c1-0-21
Degree $2$
Conductor $32976$
Sign $-1$
Analytic cond. $263.314$
Root an. cond. $16.2269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 4·7-s − 3·11-s − 4·13-s + 7·17-s + 5·19-s − 6·23-s + 4·25-s − 8·29-s − 2·31-s + 12·35-s − 6·37-s − 10·41-s + 5·43-s + 6·47-s + 9·49-s − 6·53-s − 9·55-s − 14·59-s − 11·61-s − 12·65-s + 2·67-s − 5·71-s + 4·73-s − 12·77-s + 4·79-s − 83-s + ⋯
L(s)  = 1  + 1.34·5-s + 1.51·7-s − 0.904·11-s − 1.10·13-s + 1.69·17-s + 1.14·19-s − 1.25·23-s + 4/5·25-s − 1.48·29-s − 0.359·31-s + 2.02·35-s − 0.986·37-s − 1.56·41-s + 0.762·43-s + 0.875·47-s + 9/7·49-s − 0.824·53-s − 1.21·55-s − 1.82·59-s − 1.40·61-s − 1.48·65-s + 0.244·67-s − 0.593·71-s + 0.468·73-s − 1.36·77-s + 0.450·79-s − 0.109·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32976\)    =    \(2^{4} \cdot 3^{2} \cdot 229\)
Sign: $-1$
Analytic conductor: \(263.314\)
Root analytic conductor: \(16.2269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 32976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
229 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.21600685445215, −14.56172346536008, −14.15051620193921, −13.89754451912730, −13.37277456430916, −12.51970807422039, −12.14195173238886, −11.70541057798485, −10.86167699534396, −10.46222840584292, −9.927275247355723, −9.502782272633463, −8.941603865912631, −8.013164673694892, −7.630292806476434, −7.432025083754555, −6.321222206153207, −5.627104119734480, −5.202632755419401, −5.081853100643870, −4.033844288721706, −3.165602020562072, −2.460462349774385, −1.706890730037031, −1.420998978706287, 0, 1.420998978706287, 1.706890730037031, 2.460462349774385, 3.165602020562072, 4.033844288721706, 5.081853100643870, 5.202632755419401, 5.627104119734480, 6.321222206153207, 7.432025083754555, 7.630292806476434, 8.013164673694892, 8.941603865912631, 9.502782272633463, 9.927275247355723, 10.46222840584292, 10.86167699534396, 11.70541057798485, 12.14195173238886, 12.51970807422039, 13.37277456430916, 13.89754451912730, 14.15051620193921, 14.56172346536008, 15.21600685445215

Graph of the $Z$-function along the critical line