Properties

Label 2-572e2-1.1-c1-0-33
Degree $2$
Conductor $327184$
Sign $-1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s − 2·9-s − 3·17-s − 8·19-s + 2·21-s − 3·23-s − 5·25-s + 5·27-s + 9·29-s + 8·31-s − 8·37-s − 6·41-s − 43-s + 12·47-s − 3·49-s + 3·51-s − 3·53-s + 8·57-s + 6·59-s + 7·61-s + 4·63-s + 14·67-s + 3·69-s − 12·71-s + 2·73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s − 2/3·9-s − 0.727·17-s − 1.83·19-s + 0.436·21-s − 0.625·23-s − 25-s + 0.962·27-s + 1.67·29-s + 1.43·31-s − 1.31·37-s − 0.937·41-s − 0.152·43-s + 1.75·47-s − 3/7·49-s + 0.420·51-s − 0.412·53-s + 1.05·57-s + 0.781·59-s + 0.896·61-s + 0.503·63-s + 1.71·67-s + 0.361·69-s − 1.42·71-s + 0.234·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67405878261075, −12.32330122108296, −11.99466438173860, −11.49794959870100, −11.03830408854703, −10.52798378777853, −10.08464659612030, −9.923324138404246, −9.078464217904882, −8.610105396672218, −8.352202678722776, −7.951344132452138, −6.875324031941692, −6.804283860387433, −6.331446639249190, −5.890062364804135, −5.413825260738984, −4.735740011103833, −4.335689716760119, −3.804774977433367, −3.194144860054319, −2.455647515369849, −2.284237780901635, −1.358102429906755, −0.5005988691734064, 0, 0.5005988691734064, 1.358102429906755, 2.284237780901635, 2.455647515369849, 3.194144860054319, 3.804774977433367, 4.335689716760119, 4.735740011103833, 5.413825260738984, 5.890062364804135, 6.331446639249190, 6.804283860387433, 6.875324031941692, 7.951344132452138, 8.352202678722776, 8.610105396672218, 9.078464217904882, 9.923324138404246, 10.08464659612030, 10.52798378777853, 11.03830408854703, 11.49794959870100, 11.99466438173860, 12.32330122108296, 12.67405878261075

Graph of the $Z$-function along the critical line