Properties

Label 2-32634-1.1-c1-0-6
Degree $2$
Conductor $32634$
Sign $1$
Analytic cond. $260.583$
Root an. cond. $16.1426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s + 8-s − 3·10-s − 3·11-s + 4·13-s + 16-s − 4·17-s + 2·19-s − 3·20-s − 3·22-s + 6·23-s + 4·25-s + 4·26-s − 5·29-s + 7·31-s + 32-s − 4·34-s + 37-s + 2·38-s − 3·40-s − 8·41-s − 8·43-s − 3·44-s + 6·46-s + 10·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.353·8-s − 0.948·10-s − 0.904·11-s + 1.10·13-s + 1/4·16-s − 0.970·17-s + 0.458·19-s − 0.670·20-s − 0.639·22-s + 1.25·23-s + 4/5·25-s + 0.784·26-s − 0.928·29-s + 1.25·31-s + 0.176·32-s − 0.685·34-s + 0.164·37-s + 0.324·38-s − 0.474·40-s − 1.24·41-s − 1.21·43-s − 0.452·44-s + 0.884·46-s + 1.45·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32634 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32634 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32634\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(260.583\)
Root analytic conductor: \(16.1426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32634,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.166698152\)
\(L(\frac12)\) \(\approx\) \(2.166698152\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.25714254732900, −14.61897039028576, −13.72790198934016, −13.56525764686233, −12.87491223714478, −12.54319635786718, −11.72275198128227, −11.41563132402711, −10.96822252487660, −10.51747386313019, −9.726055448078828, −8.937390166653022, −8.396517435945757, −7.913192113684944, −7.406925813664436, −6.666637666667698, −6.354639110637175, −5.242371637721389, −5.062096848624213, −4.206826042194454, −3.722257754253267, −3.141073827306937, −2.492535676845313, −1.467839056668096, −0.5037850538273112, 0.5037850538273112, 1.467839056668096, 2.492535676845313, 3.141073827306937, 3.722257754253267, 4.206826042194454, 5.062096848624213, 5.242371637721389, 6.354639110637175, 6.666637666667698, 7.406925813664436, 7.913192113684944, 8.396517435945757, 8.937390166653022, 9.726055448078828, 10.51747386313019, 10.96822252487660, 11.41563132402711, 11.72275198128227, 12.54319635786718, 12.87491223714478, 13.56525764686233, 13.72790198934016, 14.61897039028576, 15.25714254732900

Graph of the $Z$-function along the critical line