Properties

Label 2-32634-1.1-c1-0-53
Degree $2$
Conductor $32634$
Sign $-1$
Analytic cond. $260.583$
Root an. cond. $16.1426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s − 2·10-s + 4·11-s + 3·13-s + 16-s − 5·17-s − 4·19-s + 2·20-s − 4·22-s + 23-s − 25-s − 3·26-s + 8·29-s + 6·31-s − 32-s + 5·34-s + 37-s + 4·38-s − 2·40-s − 12·41-s + 5·43-s + 4·44-s − 46-s + 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 0.632·10-s + 1.20·11-s + 0.832·13-s + 1/4·16-s − 1.21·17-s − 0.917·19-s + 0.447·20-s − 0.852·22-s + 0.208·23-s − 1/5·25-s − 0.588·26-s + 1.48·29-s + 1.07·31-s − 0.176·32-s + 0.857·34-s + 0.164·37-s + 0.648·38-s − 0.316·40-s − 1.87·41-s + 0.762·43-s + 0.603·44-s − 0.147·46-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32634 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32634 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32634\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(260.583\)
Root analytic conductor: \(16.1426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 32634,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.49115911359295, −14.88109742657470, −14.06736507025264, −13.79448676463839, −13.32872692753718, −12.59922963114058, −12.01635493673715, −11.53549715514350, −10.91294901584494, −10.42565088268921, −9.966787990386329, −9.245057517696279, −8.904435786288519, −8.448984782500700, −7.845965245969840, −6.828480364670816, −6.496669958319443, −6.234613310483418, −5.442041128714845, −4.490915467203340, −4.113580044554220, −3.098859498947023, −2.469359532605013, −1.625699222931151, −1.216899366144906, 0, 1.216899366144906, 1.625699222931151, 2.469359532605013, 3.098859498947023, 4.113580044554220, 4.490915467203340, 5.442041128714845, 6.234613310483418, 6.496669958319443, 6.828480364670816, 7.845965245969840, 8.448984782500700, 8.904435786288519, 9.245057517696279, 9.966787990386329, 10.42565088268921, 10.91294901584494, 11.53549715514350, 12.01635493673715, 12.59922963114058, 13.32872692753718, 13.79448676463839, 14.06736507025264, 14.88109742657470, 15.49115911359295

Graph of the $Z$-function along the critical line